
Contents
1 Configuration .. 2

1.1 Installing OpenXT .. 2

1.2 Creating Windows VM .. 2

1.3 Credential guard configuration ... 3

2 Patch list .. 4

3 Verification .. 6

3.1 Test cases. ... 6

3.2 Hardware used. ... 6

4 Secure Boot and non-OEM/OSV UEFI applications ... 7

4.1 Shim .. 7

4.2 Microsoft UEFI Signing Service .. 8

References .. 12

1 Configuration

1.1 Installing OpenXT

Prerequisites:

 In addition to standard OpenXT requirements, the machine must have HDD with GPT.

Unzip content of provided openxt-efi-20150430.zip archive to a FAT32 formatted USB drive and boot
from it.

1.2 Creating Windows VM

This section describes creation of Windows 10 VM and configuring Credential Guard on it.

1.2.1 Option 1 (slow)
 create a VM called win10efi with 80Gb disk
 add another 1Gb disk
 type at the console

xec-vm -n win10efi -x cpuid '["0x1:ecx=0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"2147483655:edx=xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx"]'
xec-vm -n win10efi -x nestedhvm true
xec-vm -n win10efi -x viridian false
xec-vm -n win10efi -x extra-xenvm "nomigrate=1"
xec-vm -n win10efi -x ovmf true
xec-vm -n win10efi -k 2 -x virt-path sdg

 add a cdrom with windows
 start the VM tapping space, when EDK config show up choose

o device manager
o ovmf platform configuration
o change preferred resolution
o pick your monitors resolution
o then F10 ESC ESC and continue, don't press a key to boot windows
o and let it get to the EDK II shell

 type “reset” at the shell and press a key to boot windows when prompted
 wait about 10-30 mins for boot.wim to load

1.2.2 Option 2 (fast)
 create a VM called win10efi with 80Gb disk
 add another 5Gb disk
 add another 1Gb disk
 type at the console

xec-vm -n win10efi -x cpuid '["0x1:ecx=0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"2147483655:edx=xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx"]'
xec-vm -n win10efi -x nestedhvm true
xec-vm -n win10efi -x viridian false
xec-vm -n win10efi -x extra-xenvm "nomigrate=1"
xec-vm -n win10efi -x ovmf true
xec-vm -n win10efi -k 3 -x virt-path sdg

 start the VM tapping space, when EDK config show up choose
o device manager
o ovmf platform configuration
o change preferred resolution

o pick your monitors resolution
o then F10 ESC ESC and continue, don't press a key to boot windows
o and let it get to the EDK II shell

 then at the console find guid of 5Gb disk
root@xenclient-dom0:/# xec-vm -n win10efi -k 2 -g phys-path
/storage/disks/47ee69e0-6397-4e40-b0df-a4bd4b127f53.vhd

 find the device number of the guid

root@xenclient-dom0:/# tap-ctl list
...
 19286 8 0 vhd /storage/disks/47ee69e0-6397-4e40-b0df-
a4bd4b127f53.vhd
...
root@xenclient-dom0:/# cat fat32_windows_image > /dev/xen/blktap-2/tapdev8

 then type reset at the EDK II shell, and tap space, from EDK config menu pick boot manager

and the "EFI Hard Disk 1"
 windows will boot in 10-30 seconds

1.3 Credential guard configuration
 start optionalfeatures.exe

o enable Hyper-V
o for Windows 10 version 10.0.10586 (TH2) enable “Isolated user mode”

 start gpedit.msc and open “Administrative templates” -> “System” -> “Device Guard” -> “Turn
On Virtualization Based Security”

o Set "Enabled"
o Set “Secure Platform Security Level” to “Secure Boot”
o Set “Credential Guard Configuration” to “Enabled Without Lock”
o Apply the changes by clicking “OK”

 reboot

2 Patch list

All attached patches are against the state of the repositories snapshotted on 2017 Apr 25

git://github.com/OpenXT/openxt.git
 c29598f4e54704e4152f41c12adeb73df96faff6

git://git.openembedded.org/bitbake.git
 bc57798ff39cae5ffea194c867e07136f7b6f3ec

git://git.yoctoproject.org/meta-intel
 9385d9771567a7f64fe068ca773de8661a2c90ad

git://git.yoctoproject.org/meta-java
 a73939323984fca1e919d3408d3301ccdbceac9c

git://git.openembedded.org/meta-openembedded
 2ea8d7f54a061e902657c4f8ea1f7f7c25c6c4e1

https://github.com/OpenXT/meta-openxt-haskell-platform.git
 b64dddb1fdbfdd6817144a6ce180495bc9e16102

https://github.com/OpenXT/meta-openxt-ocaml-platform.git
 537299fe59823a84b592fd79543dd06afff68e60

git://git.yoctoproject.org/meta-selinux
 4c75d9cbcf1d75043c7c5ab315aa383d9b227510

git://git.yoctoproject.org/meta-virtualization.git
 042425c1d98bdd7e44a62789bd03b375045266f5

git://git.openembedded.org/openembedded-core
 a9db40da62c13b0010ce5afc1fde16d987bdfbc6

git://github.com/OpenXT/xenclient-oe.git
 628a6d2de1968be187e166242f95da22d76cb78d

The patches are in 4 groups, each patch file contains inline comments and descriptions at the top.

The first group fix bugs we encountered in the build:

The whole point of OE is to avoid host->target contamination, and the need to maintain a large array
of different host systems. It appears that some people are building XT in controlled containers so
that they may safely pollute the target with host binaries.

We built without containers on a 64 bit Centos 7 host.

We compiled a 64 bit binary of binutils and gcc that targeted _only_ 32 bit systems, and we used
that to build a 64 bit binary of ghc which targeted _only_ 32 bit systems.

With those in the path and using a linux32 personality it then possible to build XT without a
container.

The other advantage of this approach is that recipes will fail whenever they are contaminated by
host binaries, as the architecture is incompatible.

We also considered it important that if the endpoint should have SELinux then the build host should
also. The current build system in unable to operate under SELinux, so we fixed that.

 build/0001-no-64-bit-runs
 build/0002-site-config
 build/0003-explicit-external-cc-for-xen

 build/0004-uim-missing-include-from-host
 build/0005-32-bit-native-icedtea
 build/0006-psuedo-on-selinux
 build/0007-more-threads

The next patch fixes bit rot in the nesting support that has occurred since we last looked at OpenXT.
Most of the problems are collateral damage from the toolstack change, but there's a nasty vEPT
implementation bug in Xen. We provide a fix (purely to demonstrate where the problem is) but we
would not recommend using it for production as it does not enforce all the isolation requirements.
You can either use our correct fix from the previous code drop, or, better, we will work with Citrix to
get the problem fixed upstream as we have done with the rest of the nesting issues thus providing a
sustainable solution.

 nesting/0100-repair-bitrot-in-nesting-support

The next set of patches implement the work required: adding EFI support to guests, NVRAM support
for EFI variables to guests, GPT support for the installer and EFI boot support for Xen. As the
implementation for tboot is still in a state of flux, we have provided an adaptor to enable booting
the existing multiboot modules in an EFI environment. As currently in BIOS installations, grub's
menus are disabled, we have not provided a way of editing the boot configuration at runtime.
Secure Boot signing, would anyway, proscribe any such facility. The original scope of the project did
not cover support for tboot, but we felt this was an elegant solution so included it.

 efi/0200-ovmf
 efi/0300-installer-gpt-support
 efi/0400-efi-boot

This group of patches also contain, but do not apply, experimental support for a new hostbridge for
Xen that is a much better match for modern systems. It's feature complete, and works well, but a
bug in QEMU's AHCI implementation limits its current usefulness with windows guests. Q35
northbridges have 6 AHCI interface for attaching disks. This functionality is disabled by default.

Lastly in research looking at alternative ways of booting under EFI we have some patches (not to be
applied for the build) to use the canonical 64bit dom0 with EFI and Xen EFI support. We're not
convinced that this approach is a good one as it exposes Dom0 to EFI.

 research/1000-research-enable-efi-support-in-xen
 research/1010-research-64on32-support-to-make-64bit-dom0

3 Verification

Verification has been similar to what has been done for previous deliverables.

3.1 Test cases.

Test suit used here has been developed for stability and performance testing of uXen VMs. In this
particular case, it's been adopted for Hyper-V VMs for generating heavy CPU and memory workloads
to provoke potential stability issues (like FPU state corruption).

In addition to the above, we also tested if Credential Guard gets correctly installed and running.

Note: test suit is not provided as deliverable.

All L1/L2 configurations were set up with 4 vCPUs.

All L3 configurations were set up with 2 vCPUs.

 L1/L2 HyperV and Windows 10 Enterprise x64 TH2 (10.0.10586)
o L2/root domain: run set of tests to exercise L2 stability
o L3, Debian Wheezy (3.2.0-4-amd64): standard installation, manual verification of

system stability
o L3, Win10e x64 TH2: standard installation, execute test suite to verify L3 stability

 L1/L2 HyperV and Windows 10 Enterprise x64 RS1 (10.0.14393)
o L2/root domain: run set of tests to exercise L2 stability
o L3, Debian Wheezy (3.2.0-4-amd64): standard installation, manual verification of

system stability
o L3, Win10e x64 RS1: standard installation, execute test suite to verify L3 stability

3.2 Hardware used.

All the systems have minimum 8 GB of RAM.

Following hardware have been used for testing:

 Intel Core i5-6500 (HP 280 G2 MT, TPM v1.2)
 Intel Core i5-6500 (Dell OptiPlex 3040, TPM v2)

4 Secure Boot and non-OEM/OSV UEFI applications

Secure Boot prevents the launching of unknown boot loaders, firmware applications or OSes. When
enabled it verifies signatures of each boot component being loaded.

Secure Boot uses databases of known-good and known-bad signatures, keys and hashes controlled
by the firmware and kept in Non Volatile memory (in UEFI secure variables). For UEFI software to be
loaded it has to be either signed by a known-good key or its signature or hash has to be on known-
good list.

If verification of all components is successful system boots and firmware passes control to the
operating system.

Secure Boot is a hard requirement for Microsoft Credential Guard and OpenXT has been extended to
support it, both booting the OpenXT platform using Secure Boot, and allowing guests to boot using
Secure Boot.

PC manufacturers include Microsoft keys and signatures in their firmware so as to enable easy
deployment of Windows.

The known-good and known-bad databases are respectively called db (signatures database) and dbx
(forbidden signatures database). db and dbx can be updated with an authentication descriptor
signed with one of KEK keys (Key Exchange Key Signature Database). And so KEK can be updated by
an authentication descriptor signed with PK (Platform Key). PK is usually provisioned with an OEM-
owned key. The KEK database usually contains OEM and Microsoft keys. db and dbx are usually
provisioned by OEM and Microsoft signatures.

With manual interaction with the PC console it is possible to manage Secure Boot keys. This is
essential for development/test purposes. A security conscious organization might wish to generate
their own signing key and deploy it to their machines and even delete the Microsoft and/or OEM
keys to lock the machine down. Having provisioned such a key, the machine would be able to
directly boot a payload signed by the organization. Entering UEFI Setup Mode clears the PK and all
the secure variables can be modified without authentication checks. For convenience, we have
provided source code for an enroll tool into which the relevant keys can be embedded and
automatically provisioned when the module executes, for example by placing it on a USB stick and
selecting to boot from it.

In practice, at least for already deployed machines, most organizations would find the manual
intervention to provision new keys too burdensome. Fortunately, an alternative mechanism is
usually possible. Most machines come provisioned with an additional Microsoft-controlled key called
the Microsoft Corporation UEFI CA. Microsoft run a program that enables 3rd party vendors that
meet various legal and technical requirements to create UEFI programs and submit them to
Microsoft for signing which they will consider after completing a review.

4.1 Shim

A common use for the Microsoft Corporation UEFI CA is for enabling 3rd party OSes to boot. A simple
EFI application known as “shim” [1] is typically used for this purpose. Use of “shim” is recommended
in “Microsoft's UEFI CA signing policy” document [2] and since it is known to Microsoft greatly
simplifies and accelerates the review process.

From the original shim github description [1]:
“shim is a trivial EFI application that, when run, attempts to open and execute another application. It

will initially attempt to do this via the standard EFI LoadImage() and StartImage() calls. If these fail
(because secure boot is enabled and the binary is not signed with an appropriate key, for instance) it
will then validate the binary against a built-in certificate. If this succeeds and if the binary or signing
key are not blacklisted then “shim” will relocate and execute the binary.

shim will also install a protocol which permits the second-stage bootloader to perform similar binary
validation. This protocol has a GUID as described in the shim.h header file and provides a single entry
point.”

Shim may thus be used to boot a suitably signed EFI payload that runs OpenXT. We have provided a
tool that parses a grub configuration boot stanza and builds a single EFI payload containing the
specified configuration (typically tboot, xen, dom0 kernel and dom0 initrd images and associated
command lines). This payload must be signed by a key that has its certificate embedded in shim.

Having verified the signature of the payload, shim will transfer control to it. The payload will
extract/decompress the images into memory, synthesize a multiboot structure and associated
machine information tables, then jump into the 32b entry point of the first image. If tboot is used,
TXT will be used to perform a DRoT measurement of the payload components for use in addition to
the SRoT measurements during the Secure Boot. tboot will then transfer control to Xen, which will
create dom0 using the kernel and initrd images. The dom0 initrd is responsible for continuing the
chain of trust on through the dom0 filesystem as per standard OpenXT practice of using the TPM to
seal the dom0 filesystem AES XTS encryption key. It may be desirable to add additional SRoT PCRs
(e.g. 0, 2, 4) to the set used to seal the key in addition to the DRoT PCR (17, 18, 19).

Microsoft require that the certificate built-in to shim be one that is held on a HSM, so a suitable
device must be acquired for this purpose. The certificate must be extracted and embedded in the
shim source code, and then submitted to Microsoft for signing. The HSM may then be used to sign
updated payloads without further interaction with Microsoft.

4.2 Microsoft UEFI Signing Service

The Microsoft UEFI signing service requires two prerequisites:

 Extended Validation (EV) Code Signing Certificate
EV is similar to standard code signing certificate except that it requires verification of the
requesting entity’s identity by a CA. Currently Microsoft recommended list of CAs includes:
DigiCert, Entrust, GlobalSign, Symantec and Certum. More details in [3]

 Hardware Developer Program account
Registration process requires EV certificate. Most recent description of the procedure in [4]

Hardware Developer Program account allows accessing SysDev dashboard [5] with Microsoft File
signing service. Once logged-in to SysDev portal, proceed with “Create UEFI submission” [6] in “File
signing services” tile. This should result in following UEFI submission page:

Name of the submission is required.

Submission package should be either .efi file or .efi file archived in a .cab file. .efi file should be
standard UEFI PE binary singed with EV key registered with Hardware Developer Program account.
EBC binaries are not accepted. List of requirements for UEFI signing submissions included in [2].

Submitting valid submission package should result in direct email contact with a member of
Microsoft Windows Sysdev UEFI Signing Program. That part is not automated and usually requires
filling out provided questionnaire and sending it back.

Questionnaire should be similar to the following list of questions (comments relevant to the project
[in-lined]):

 Provide URLs to your company website and products included in this Submission.
 Does the UEFI submission contain final shipping product (RTM – Release to Manufacture), to

better understand this question please go through signing policy updates published in SysDev
blog?
[UEFI signing policy requires UEFI submission to be production quality.]

 Have you tested your product following Pre-Submission testing document?
[UEFI signing policy requires UEFI submission to be production quality.]

 Provide a description of the purpose and functions of your submitted modules.
[It’s a clone of the shim, suggested in “Microsoft's UEFI CA signing policy” document [2], that
boots type-1 security hypervisor.]

 Is this a version update to any of your earlier signed UEFI submission, if yes then:
o What is the Submission ID of previous submission?

o Is there a security fix involved in this newer version? If yes, provide brief explanation of
fixes and impact

 Does the UEFI submission include license terms that would mandate the transmission of keys
used for signing? (ie..,GPLv3 or similar)
[No, it's a clone of the shim suggested in “Microsoft's UEFI CA signing policy” document [2], the
license does not require the transmission of keys.]

 Does your submission load and execute any other code prior to ExitBootServices()? If so, please
explain how the code is loaded, authorized, and executed.
[Yes, it does. Loaded binaries are checked against the embedded EV certificate in .vendor_cert
section of the binary, and if they pass they are permitted to execute.
The binaries loaded by the shim ensure the continuation of the chain of trust, by checking any
other modules they may load using the shim protocol, or UEFI's BS->LoadImage.]

 Does your submission take any user input? And what are the input validation performed?
[No.]

 Does your submission take any programmatic input (files on disc or UEFI variables etc.)? And
what are the input validation performed?
[It checks a revocation list of hashes and certificates, as required by Microsoft's UEFI CA signing
policy document, the data are parsed carefully, and we have tested with various invalid and
fuzzed input.]

 Have you done any security review of your product, internal or external?
[Yes, internal.]

 Does your product use GRUB OR other loaders? If yes, can you describe where the source code
originated and what Secure Boot protections have been enabled in it?
[No, it doesn’t]

 Do you use OpenSSL, if yes then what is the version?
[Yes, current version OpenSSL 1.1.0e]

 Is it a EfiByteCode? If yes, then what are the platforms supported?
[No.]

 Is it specific to any OEM specific device only? And if yes, which ones?
[No.]

 Is this a SHIM? If yes then:
o What is the origin of your SHIM and full version number?

[It’s a shim suggested in “UEFI CA signing policy document” document [2]. Following
version was cloned: https://github.com/rhinstaller/shim/commit/
ea5f7e15971358b972b3a42656f316db588f5311]

o How do you manage and protect the keys used in your SHIM?
[We use an HSM in a physically secure location, with two factor authentication.]

o Do you use EV certificates as embedded certificates in SHIM?
[Yes.]

o If your SHIM launches GRUB or other loaders, what is the source code origin and full
version?
[It doesn’t]

o If your SHIM launches anything else, provide further details about what is launched and
how it prevents execution of unauthenticated code
[It launches our type-1 security hypervisor. Any binaries or modules that may be
subsequently loaded are verified either using the shim protocol, or by using UEFI's BS-

>LoadImage both of which verify the binary. This guarantees the chain of trust is
maintained.]

o Does it load GRUB or other loaders which support loading unsigned kernels?
[No, the binary loaded contains all the ring 0 code for the system, and does not load
anything else which isn’t both signed and measured, nor will our signing policy permit us
to sign anything that would.]

o What are the changes made to this compared to your last one signed (if this is not your
first submission)?

References

[1] "shim," [Online]. Available: https://github.com/rhinstaller/shim.

[2] "UEFI CA Signing policy updates," [Online]. Available:
https://blogs.msdn.microsoft.com/windows_hardware_certification/2013/12/03/microsoft-
uefi-ca-signing-policy-updates.

[3] "Get a code signing certificate," [Online]. Available: https://docs.microsoft.com/en-gb/windows-
hardware/drivers/dashboard/get-a-code-signing-certificate.

[4] "Register for the Hardware Program," [Online]. Available: https://docs.microsoft.com/en-
gb/windows-hardware/drivers/dashboard/register-for-the-hardware-program.

[5] "SysDev dashboard," [Online]. Available: https://sysdev.microsoft.com.

[6] "UEFI submission," [Online]. Available: https://sysdev.microsoft.com/en-
GB/Hardware/member/FileSigningServices/CreateUefiRequest.aspx .

