-
Notifications
You must be signed in to change notification settings - Fork 62
/
train_ppo.py
56 lines (45 loc) · 1.64 KB
/
train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
""""""
import numpy as np
from openrl.configs.config import create_config_parser
from openrl.envs.common import make
from openrl.modules.common import PPONet as Net
from openrl.runners.common import PPOAgent as Agent
def train():
# create the neural network
cfg_parser = create_config_parser()
cfg = cfg_parser.parse_args()
# create environment, set environment parallelism to 9
env = make("CartPole-v1", env_num=9)
net = Net(
env,
cfg=cfg,
)
# initialize the trainer
agent = Agent(net, use_wandb=True, project_name="CartPole-v1")
# start training, set total number of training steps to 20000
agent.train(total_time_steps=20000)
env.close()
return agent
def evaluation(agent):
# begin to test
# Create an environment for testing and set the number of environments to interact with to 9. Set rendering mode to group_human.
render_mode = "group_human"
render_mode = None
env = make("CartPole-v1", render_mode=render_mode, env_num=9, asynchronous=True)
# The trained agent sets up the interactive environment it needs.
agent.set_env(env)
# Initialize the environment and get initial observations and environmental information.
obs, info = env.reset()
done = False
step = 0
while not np.any(done):
# Based on environmental observation input, predict next action.
action, _ = agent.act(obs, deterministic=True)
obs, r, done, info = env.step(action)
step += 1
if step % 50 == 0:
print(f"{step}: reward:{np.mean(r)}")
env.close()
if __name__ == "__main__":
agent = train()
evaluation(agent)