-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
242 lines (207 loc) · 9.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import logging
import multiprocessing
import os
import time
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import modules.commons as commons
import utils
from data_utils import TextAudioCollate, TextAudioSpeakerLoader
from diffusion.vocoder import Vocoder
from models import (
SynthesizerTrn,
)
from modules.losses import mle_loss
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING)
torch.backends.cudnn.benchmark = True
global_step = 0
start_time = time.time()
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
# for pytorch on win, backend use gloo
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
collate_fn = TextAudioCollate()
all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training.
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem)
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
if all_in_mem:
num_workers = 0
train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True,
batch_size=hps.train.batch_size, collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem,vol_aug = False)
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
batch_size=1, pin_memory=False,
drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda(rank)
optim_g = commons.Adam(
net_g.parameters(),
scheduler=hps.train.scheduler,
dim_model=hps.model.hidden_channels,
warmup_steps=hps.train.warmup_steps,
lr=hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) # , find_unused_parameters=True)
if rank == 0:
vocoder = Vocoder('nsf-hifigan','pretrain/nsf_hifigan/model', device="cuda")
skip_optimizer = False
try:
name = utils.latest_checkpoint_path(hps.model_dir, "G_*.pth")
_, _, _, epoch_str = utils.load_checkpoint(name, net_g,
optim_g, skip_optimizer)
epoch_str = max(epoch_str, 1)
global_step=int(name[name.rfind("_")+1:name.rfind(".")])+1
optim_g.step_num = global_step
optim_g._update_learning_rate()
#global_step = (epoch_str - 1) * len(train_loader)
except Exception:
print("load old checkpoint failed...")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
# set up warm-up learning rate
# if epoch <= warmup_epoch:
# for param_group in optim_g.param_groups:
# param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch
# training
if rank == 0:
train_and_evaluate(rank, epoch, hps, net_g, optim_g, scaler,
[train_loader, eval_loader], logger, [writer, writer_eval],vocoder)
else:
train_and_evaluate(rank, epoch, hps, net_g, optim_g, scaler,
[train_loader, None], None, None,vocoder)
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, loaders, logger, writers, vocoder):
image_dict = {}
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
half_type = torch.bfloat16 if hps.train.half_type=="bf16" else torch.float16
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
nets.train()
for batch_idx, items in enumerate(train_loader):
c, f0, spec, y, spk, lengths, uv,volume = items
g = spk.cuda(rank, non_blocking=True)
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
c = c.cuda(rank, non_blocking=True)
f0 = f0.cuda(rank, non_blocking=True)
uv = uv.cuda(rank, non_blocking=True)
lengths = lengths.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
x_mask, (z_p, m_p, logs_p), logdet, pred_lf0, norm_lf0, lf0 = nets(c, f0, uv, spec, g=g, c_lengths=lengths,
vol = volume)
with autocast(enabled=False, dtype=half_type):
loss_mle = mle_loss(z_p,m_p,logs_p,logdet,x_mask)
optims.zero_grad()
scaler.scale(loss_mle).backward()
grad_norm = commons.clip_grad_value_(nets.parameters(), 5)
scaler.unscale_(optims._optim)
scaler.step(optims._optim)
optims._update_learning_rate()
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optims.get_lr()
logger.info('Epoch: {} [{:.0f}%], step: {}, loss_mle: {}, lr: {} grad_norm: {}'.format(epoch, 100. * batch_idx / len(train_loader), global_step, loss_mle, lr, grad_norm))
scalar_dict = {"model/loss_mle": loss_mle, "model/lr": lr, "model/grad_norm": grad_norm}
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
if nets.module.use_automatic_f0_prediction:
image_dict = ({
"all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
pred_lf0[0, 0, :].detach().cpu().numpy()),
"all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
norm_lf0[0, 0, :].detach().cpu().numpy())
})
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, nets, eval_loader, writer_eval, vocoder)
utils.save_checkpoint(nets, optims._optim, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
if keep_ckpts > 0:
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
global_step += 1
if rank == 0:
global start_time
now = time.time()
durtaion = format(now - start_time, '.2f')
logger.info(f'====> Epoch: {epoch}, cost {durtaion} s')
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval, vocoder):
generator.eval()
image_dict = {}
audio_dict = {}
with torch.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk, _, uv,volume = items
g = spk[:1].cuda(0)
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
c = c[:1].cuda(0)
f0 = f0[:1].cuda(0)
uv= uv[:1].cuda(0)
if volume is not None:
volume = volume[:1].cuda(0)
y_mel,_ = generator.module.infer(c, f0, uv, g=g,vol = volume)
_f0 = f0.transpose(-1, -2).unsqueeze(0)
_mel = y_mel.transpose(-1, -2)
#print(f0.shape)
#print(y_mel.shape)
y_hat = vocoder.infer(_mel, _f0).squeeze()
audio_dict.update({
f"gen/audio_{batch_idx}": y_hat,
f"gt/audio_{batch_idx}": y[0]
})
image_dict.update({
"gen/mel": utils.plot_spectrogram_to_numpy(y_mel[0].cpu().numpy()),
"gt/mel": utils.plot_spectrogram_to_numpy(spec[0].cpu().numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()