-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtinyfive.py
525 lines (466 loc) · 27.8 KB
/
tinyfive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import numpy as np
from bitstring import Bits, pack
# This file is divided into two parts:
# - Part I defines all state and instructions of RISC-V (without the
# instruction bit-encodings).
# - Part II implements encoding and decoding functions around the instructions
# defined in part I.
# Part I is sufficient for emulating RISC-V. Part II is only needed if you want
# to emulate the instruction encoding of RISC-V.
#-------------------------------------------------------------------------------
# Part I
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# create state of CPU: memory 'mem[]', register file 'x[]', program counter 'pc'
#-------------------------------------------------------------------------------
class State(object): pass
s = State()
mem_size = 1000 # size of memory in bytes
s.mem = np.zeros(mem_size, dtype=np.uint8) # memory 'mem[]' is unsigned int8
s.x = np.zeros(32, dtype=np.int32) # register file 'x[]' is signed int32
s.pc = 0
#-------------------------------------------------------------------------------
# Base instructions (RV32I)
#-------------------------------------------------------------------------------
def _i8(x): return np.int8(x) # convert to 8-bit signed
def _u(x): return np.uint32(x) # convert to 32-bit unsigned
# increment pc by 4 and make sure that x[0] is always 0
def _pc(s):
s.x[0] = 0
s.pc += 4
# arithmetic
def ADD (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] + s.x[rs2]; _pc(s)
def ADDI(s,rd,rs1,imm): s.x[rd] = s.x[rs1] + imm; _pc(s)
def SUB (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] - s.x[rs2]; _pc(s)
# bitwise logical
def XOR (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] ^ s.x[rs2]; _pc(s)
def XORI(s,rd,rs1,imm): s.x[rd] = s.x[rs1] ^ imm; _pc(s)
def OR (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] | s.x[rs2]; _pc(s)
def ORI (s,rd,rs1,imm): s.x[rd] = s.x[rs1] | imm; _pc(s)
def AND (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] & s.x[rs2]; _pc(s)
def ANDI(s,rd,rs1,imm): s.x[rd] = s.x[rs1] & imm; _pc(s)
# shift (note: 0x1f ensures that only the 5 LSBs are used as shift-amount)
# (For rv64, we will need to use the 6 LSBs so 0x3f)
def SLL (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] << (s.x[rs2] & 0x1f); _pc(s)
def SRA (s,rd,rs1,rs2): s.x[rd] = s.x[rs1] >> (s.x[rs2] & 0x1f); _pc(s)
def SRL (s,rd,rs1,rs2): s.x[rd] = _u(s.x[rs1]) >> (s.x[rs2] & 0x1f); _pc(s)
def SLLI(s,rd,rs1,imm): s.x[rd] = s.x[rs1] << imm; _pc(s)
def SRAI(s,rd,rs1,imm): s.x[rd] = s.x[rs1] >> imm; _pc(s)
def SRLI(s,rd,rs1,imm): s.x[rd] = _u(s.x[rs1]) >> imm; _pc(s)
# set to 1 if less than
def SLT (s,rd,rs1,rs2): s.x[rd] = 1 if s.x[rs1] < s.x[rs2] else 0; _pc(s)
def SLTI (s,rd,rs1,imm): s.x[rd] = 1 if s.x[rs1] < imm else 0; _pc(s)
def SLTU (s,rd,rs1,rs2): s.x[rd] = 1 if _u(s.x[rs1]) < _u(s.x[rs2]) else 0; _pc(s)
def SLTIU(s,rd,rs1,imm): s.x[rd] = 1 if _u(s.x[rs1]) < _u(imm) else 0; _pc(s)
# branch
def BEQ (s,rs1,rs2,imm): s.pc += imm if s.x[rs1] == s.x[rs2] else 4
def BNE (s,rs1,rs2,imm): s.pc += imm if s.x[rs1] != s.x[rs2] else 4
def BLT (s,rs1,rs2,imm): s.pc += imm if s.x[rs1] < s.x[rs2] else 4
def BGE (s,rs1,rs2,imm): s.pc += imm if s.x[rs1] >= s.x[rs2] else 4
def BLTU(s,rs1,rs2,imm): s.pc += imm if _u(s.x[rs1]) < _u(s.x[rs2]) else 4
def BGEU(s,rs1,rs2,imm): s.pc += imm if _u(s.x[rs1]) >= _u(s.x[rs2]) else 4
# jump
def JAL (s,rd,imm): s.x[rd] = s.pc + 4; s.pc += imm
def JALR(s,rd,rs1,imm): t = s.pc + 4; s.pc = (s.x[rs1] + imm) & ~1; s.x[rd] = t
# load immediate
def LUI (s,rd,imm): s.x[rd] = imm << 12; _pc(s)
def AUIPC(s,rd,imm): s.x[rd] = s.pc + (imm << 12); _pc(s)
# load, note the different argument order, example: 'lb rd, offset(rs1)'
def LB (s,rd,imm,rs1): s.x[rd] = _i8(s.mem[s.x[rs1] + imm]); _pc(s)
def LBU(s,rd,imm,rs1): s.x[rd] = s.mem[s.x[rs1] + imm]; _pc(s)
def LH (s,rd,imm,rs1): s.x[rd] = (_i8(s.mem[s.x[rs1] + imm+1]) << 8) + \
s.mem[s.x[rs1] + imm]; _pc(s)
def LHU(s,rd,imm,rs1): s.x[rd] = (s.mem[s.x[rs1] + imm+1] << 8) + \
s.mem[s.x[rs1] + imm]; _pc(s)
def LW (s,rd,imm,rs1): s.x[rd] = (_i8(s.mem[s.x[rs1] + imm+3]) << 24) + \
(s.mem[s.x[rs1] + imm+2] << 16) + \
(s.mem[s.x[rs1] + imm+1] << 8) + \
s.mem[s.x[rs1] + imm]; _pc(s)
# store, note the different argument order, example: 'sb rs2, offset(rs1)'
def SB(s,rs2,imm,rs1): s.mem[s.x[rs1] + imm] = s.x[rs2] & 0xff; _pc(s)
def SH(s,rs2,imm,rs1): s.mem[s.x[rs1] + imm] = s.x[rs2] & 0xff; _pc(s); \
s.mem[s.x[rs1] + imm+1] = (s.x[rs2] >> 8) & 0xff
def SW(s,rs2,imm,rs1): s.mem[s.x[rs1] + imm] = s.x[rs2] & 0xff; _pc(s); \
s.mem[s.x[rs1] + imm+1] = (s.x[rs2] >> 8) & 0xff; \
s.mem[s.x[rs1] + imm+2] = (s.x[rs2] >> 16) & 0xff; \
s.mem[s.x[rs1] + imm+3] = (s.x[rs2] >> 24) & 0xff
# Note: the 3 missing instructions FENCE, ECALL, EBREAK are not needed here
#-------------------------------------------------------------------------------
# M-extension (RV32M)
#-------------------------------------------------------------------------------
def _muls(a,b): return np.multiply( a, b, dtype=np.int64)
def _mulu(a,b): return np.multiply(_u(a), _u(b), dtype=np.uint64)
def MUL (s,rd,rs1,rs2): s.x[rd] = _muls(s.x[rs1], s.x[rs2]); _pc(s)
def MULH (s,rd,rs1,rs2): s.x[rd] = _muls(s.x[rs1], s.x[rs2]) >> 32; _pc(s)
def MULHSU(s,rd,rs1,rs2): s.x[rd] = _muls(s.x[rs1],_u(s.x[rs2])) >> 32; _pc(s)
def MULHU (s,rd,rs1,rs2): s.x[rd] = _mulu(s.x[rs1],s.x[rs2]) >> _u(32); _pc(s)
# TODO: why is Python integer division '//' and remainder '%' not exactly the same
# as RISC-V 'div' and 'rem'? # For efficient mapping of Python code to RISC-V,
# these basic instructions should be exactly the same
def _div(a,b): return np.fix(a/b).astype(int)
def _rem(a,b): return a - b * _div(a, b)
def DIV (s,rd,rs1,rs2): s.x[rd] = _div( s.x[rs1], s.x[rs2]); _pc(s)
def DIVU(s,rd,rs1,rs2): s.x[rd] = _div(_u(s.x[rs1]),_u(s.x[rs2])); _pc(s)
def REM (s,rd,rs1,rs2): s.x[rd] = _rem( s.x[rs1], s.x[rs2]); _pc(s)
def REMU(s,rd,rs1,rs2): s.x[rd] = _rem(_u(s.x[rs1]),_u(s.x[rs2])); _pc(s)
#-------------------------------------------------------------------------------
# F-extension (RV32F)
#-------------------------------------------------------------------------------
s.f = np.zeros(32, dtype=np.float32) # register file 'f[]' for F-extension
def f2b(x): return (s.f[x]).view(np.uint32) # float-to-bits
def b2f(x): return np.uint32(x).view(np.float32) # bits-to-float
def FADD_S (s,rd,rs1,rs2): s.f[rd] = s.f[rs1] + s.f[rs2]; _pc(s)
def FSUB_S (s,rd,rs1,rs2): s.f[rd] = s.f[rs1] - s.f[rs2]; _pc(s)
def FMUL_S (s,rd,rs1,rs2): s.f[rd] = s.f[rs1] * s.f[rs2]; _pc(s)
def FDIV_S (s,rd,rs1,rs2): s.f[rd] = s.f[rs1] / s.f[rs2]; _pc(s)
def FSQRT_S(s,rd,rs1) : s.f[rd] = np.sqrt(s.f[rs1]); _pc(s)
def FMIN_S (s,rd,rs1,rs2): s.f[rd] = min(s.f[rs1], s.f[rs2]); _pc(s)
def FMAX_S (s,rd,rs1,rs2): s.f[rd] = max(s.f[rs1], s.f[rs2]); _pc(s)
def FMADD_S (s,rd,rs1,rs2,rs3): s.f[rd] = s.f[rs1] * s.f[rs2] + s.f[rs3]; _pc(s)
def FMSUB_S (s,rd,rs1,rs2,rs3): s.f[rd] = s.f[rs1] * s.f[rs2] - s.f[rs3]; _pc(s)
def FNMADD_S(s,rd,rs1,rs2,rs3): s.f[rd] = -s.f[rs1] * s.f[rs2] - s.f[rs3]; _pc(s)
def FNMSUB_S(s,rd,rs1,rs2,rs3): s.f[rd] = -s.f[rs1] * s.f[rs2] + s.f[rs3]; _pc(s)
def FEQ_S(s,rd,rs1,rs2): s.x[rd] = int(s.f[rs1] == s.f[rs2]); _pc(s)
def FLT_S(s,rd,rs1,rs2): s.x[rd] = int(s.f[rs1] < s.f[rs2]); _pc(s)
def FLE_S(s,rd,rs1,rs2): s.x[rd] = int(s.f[rs1] <= s.f[rs2]); _pc(s)
def FLW_S(s,rd,imm,rs1): s.f[rd] = b2f((s.mem[s.x[rs1] + imm+3] << 24) + \
(s.mem[s.x[rs1] + imm+2] << 16) + \
(s.mem[s.x[rs1] + imm+1] << 8) + \
s.mem[s.x[rs1] + imm]); _pc(s)
def FSW_S(s,rs2,imm,rs1): s.mem[s.x[rs1] + imm] = f2b(rs2) & 0xff; _pc(s); \
s.mem[s.x[rs1] + imm+1] = (f2b(rs2) >> 8) & 0xff; \
s.mem[s.x[rs1] + imm+2] = (f2b(rs2) >> 16) & 0xff; \
s.mem[s.x[rs1] + imm+3] = (f2b(rs2) >> 24) & 0xff
def _fsgn(s,rs1,msb): return b2f((msb & 0x80000000) | (f2b(rs1) & 0x7fffffff))
def FSGNJ_S (s,rd,rs1,rs2): s.f[rd] = _fsgn(s, rs1, f2b(rs2)); _pc(s)
def FSGNJN_S(s,rd,rs1,rs2): s.f[rd] = _fsgn(s, rs1, ~f2b(rs2)); _pc(s)
def FSGNJX_S(s,rd,rs1,rs2): s.f[rd] = _fsgn(s, rs1, f2b(rs2) ^ f2b(rs1)); _pc(s)
def FCVT_S_W (s,rd,rs1): s.f[rd] = np.float32( s.x[rs1]); _pc(s)
def FCVT_S_WU(s,rd,rs1): s.f[rd] = np.float32(_u(s.x[rs1])); _pc(s)
def FCVT_W_S (s,rd,rs1): s.x[rd] = np.int32 ( s.f[rs1]); _pc(s)
def FCVT_WU_S(s,rd,rs1): s.x[rd] = np.uint32 ( s.f[rs1]); _pc(s)
def FMV_W_X (s,rd,rs1): s.f[rd] = b2f(s.x[rs1]); _pc(s)
def FMV_X_W (s,rd,rs1): s.x[rd] = f2b(rs1); _pc(s)
def FCLASS_S (s,rd,rs1):
if np.isneginf(s.f[rs1]) : s.x[rd] = 1
elif np.isposinf(s.f[rs1]) : s.x[rd] = 1 << 7
elif f2b(rs1) == 0x80000000 : s.x[rd] = 1 << 3
elif f2b(rs1) == 0 : s.x[rd] = 1 << 4
elif f2b(rs1) == 0x7f800001 : s.x[rd] = 1 << 8
elif f2b(rs1) == 0x7fc00000 : s.x[rd] = 1 << 9
elif (f2b(rs1) >> 23) == 0 : s.x[rd] = 1 << 5
elif (f2b(rs1) >> 23) == 0x100: s.x[rd] = 1 << 2
elif s.f[rs1] < 0.0 : s.x[rd] = 1 << 1
else : s.x[rd] = 1 << 6
_pc(s)
# TODOs:
# - add rounding mode (rm) argument. Only rm = 0 is implemented right now.
# See experimental/rounding_modes.py for more details.
# - add floating point CSR register
#-------------------------------------------------------------------------------
# Part II
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# useful functions for accessing state and memory
#-------------------------------------------------------------------------------
def clear_cpu(s):
s.x = np.zeros(32, dtype=np.int32)
s.pc = 0
def clear_mem(s, start=0, end=mem_size):
"""clear memory from address 'start' to 'end' (excluding 'end')"""
for i in range(start, end): s.mem[i] = 0
def write_i32(s, x, addr):
"""write 32-bit int to memory (takes 4 byte-addresses)"""
for i in range(0, 4): s.mem[addr + i] = (x >> (8*i)) & 0xff
def read_i32(s, addr):
""""read 32-bit int from memory"""
ret = _i8(s.mem[addr + 3]) << 3*8
for i in range(0, 3):
ret += s.mem[addr + i] << i*8
return ret
def write_i32_vec(s, vec, start):
"""write i32-vector to memory address 'start'"""
for i in range(0, np.size(vec)):
write_i32(s, vec[i], start + 4*i)
def read_i32_vec(s, size, start):
"""read i32-vector of size 'size' from memory address 'start'"""
ret = np.empty(size, dtype=np.int32)
for i in range(0, size):
ret[i] = read_i32(s, start + 4*i)
return ret
def mem_dump(s, start, size):
"""for debug: dump memory from byteaddress 'start', dump out 'size' bytes"""
for i in range(start, start + size, 4):
print('%08x' % _u(read_i32(s, i)))
def dump_state(s):
print("pc : %4d" % s.pc)
for i in range(0, 32):
print("x[%2d]: %4d" % (i, s.x[i]))
#-------------------------------------------------------------------------------
# decode instruction
#-------------------------------------------------------------------------------
def field(bits, hi, lo):
"""extract bitfields from a bit-array using Verilog bit-indexing order,
so [0] is the right-most bit (which is opposite order than bitstring),
and [1:0] are the 2 least significant bits, etc."""
return bits[len(bits) - 1 - hi : len(bits) - lo]
def dec(inst):
"""decode instruction"""
opcode = field(inst, 6, 0).bin
rd = field(inst, 11, 7).uint
f3 = field(inst, 14, 12).bin
rs1 = field(inst, 19, 15).uint
rs2 = field(inst, 24, 20).uint
rs2_bi = field(inst, 24, 20).bin
rs3 = field(inst, 31, 27).uint
f2 = field(inst, 26, 25).bin
f7 = field(inst, 31, 25).bin
shamt = rs2
imm_i = field(inst, 31, 20).int # I-type
imm_s = (field(inst, 31, 25) + field(inst, 11, 7)).int # S-type
imm_b = (field(inst, 31, 31) + field(inst, 7, 7) +
field(inst, 30, 25) + field(inst, 11, 8) + '0b0').int # B-type
imm_u = field(inst, 31, 12).int # U-type
imm_j = (field(inst, 31, 31) + field(inst, 19, 12) +
field(inst, 20, 20) + field(inst, 30, 21) + '0b0').int # J-type
f3_opc = f3 + '_' + opcode
f7_f3_ = f7 + '_' + f3_opc
f2_f3_ = f2 + '_' + f3_opc
f7_rs2 = f7 + '_' + rs2_bi + '_' + f3_opc
# below is copied from table 24.2 of RISC-V ISA Spec Vol I
if opcode == '0110111': LUI (s, rd, imm_u)
elif opcode == '0010111': AUIPC(s, rd, imm_u)
elif opcode == '1101111': JAL (s, rd, imm_j)
elif f3_opc == '000_1100111': JALR (s, rd, rs1, imm_i)
elif f3_opc == '000_1100011': BEQ (s, rs1, rs2, imm_b)
elif f3_opc == '001_1100011': BNE (s, rs1, rs2, imm_b)
elif f3_opc == '100_1100011': BLT (s, rs1, rs2, imm_b)
elif f3_opc == '101_1100011': BGE (s, rs1, rs2, imm_b)
elif f3_opc == '110_1100011': BLTU (s, rs1, rs2, imm_b)
elif f3_opc == '111_1100011': BGEU (s, rs1, rs2, imm_b)
elif f3_opc == '000_0000011': LB (s, rd, imm_i, rs1)
elif f3_opc == '001_0000011': LH (s, rd, imm_i, rs1)
elif f3_opc == '010_0000011': LW (s, rd, imm_i, rs1)
elif f3_opc == '100_0000011': LBU (s, rd, imm_i, rs1)
elif f3_opc == '101_0000011': LHU (s, rd, imm_i, rs1)
elif f3_opc == '000_0100011': SB (s, rs2, imm_s, rs1)
elif f3_opc == '001_0100011': SH (s, rs2, imm_s, rs1)
elif f3_opc == '010_0100011': SW (s, rs2, imm_s, rs1)
elif f3_opc == '000_0010011': ADDI (s, rd, rs1, imm_i)
elif f3_opc == '010_0010011': SLTI (s, rd, rs1, imm_i)
elif f3_opc == '011_0010011': SLTIU(s, rd, rs1, imm_i)
elif f3_opc == '100_0010011': XORI (s, rd, rs1, imm_i)
elif f3_opc == '110_0010011': ORI (s, rd, rs1, imm_i)
elif f3_opc == '111_0010011': ANDI (s, rd, rs1, imm_i)
elif f7_f3_ == '0000000_001_0010011': SLLI (s, rd, rs1, shamt)
elif f7_f3_ == '0000000_101_0010011': SRLI (s, rd, rs1, shamt)
elif f7_f3_ == '0100000_101_0010011': SRAI (s, rd, rs1, shamt)
elif f7_f3_ == '0000000_000_0110011': ADD (s, rd, rs1, rs2)
elif f7_f3_ == '0100000_000_0110011': SUB (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_001_0110011': SLL (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_010_0110011': SLT (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_011_0110011': SLTU (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_100_0110011': XOR (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_101_0110011': SRL (s, rd, rs1, rs2)
elif f7_f3_ == '0100000_101_0110011': SRA (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_110_0110011': OR (s, rd, rs1, rs2)
elif f7_f3_ == '0000000_111_0110011': AND (s, rd, rs1, rs2)
# M-extension
elif f7_f3_ == '0000001_000_0110011': MUL (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_001_0110011': MULH (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_010_0110011': MULHSU(s, rd, rs1, rs2)
elif f7_f3_ == '0000001_011_0110011': MULHU (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_100_0110011': DIV (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_101_0110011': DIVU (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_110_0110011': REM (s, rd, rs1, rs2)
elif f7_f3_ == '0000001_111_0110011': REMU (s, rd, rs1, rs2)
# F-extension
elif f3_opc == '010_0000111': FLW_S (s, rd, imm_i, rs1)
elif f3_opc == '010_0100111': FSW_S (s, rs2, imm_s, rs1)
elif f2_f3_ == '00_000_1000011': FMADD_S (s, rd, rs1, rs2, rs3)
elif f2_f3_ == '00_000_1000111': FMSUB_S (s, rd, rs1, rs2, rs3)
elif f2_f3_ == '00_000_1001011': FNMSUB_S (s, rd, rs1, rs2, rs3)
elif f2_f3_ == '00_000_1001111': FNMADD_S (s, rd, rs1, rs2, rs3)
elif f7_f3_ == '0000000_000_1010011': FADD_S (s, rd, rs1, rs2)
elif f7_f3_ == '0000100_000_1010011': FSUB_S (s, rd, rs1, rs2)
elif f7_f3_ == '0001000_000_1010011': FMUL_S (s, rd, rs1, rs2)
elif f7_f3_ == '0001100_000_1010011': FDIV_S (s, rd, rs1, rs2)
elif f7_f3_ == '0010000_000_1010011': FSGNJ_S (s, rd, rs1, rs2)
elif f7_f3_ == '0010000_001_1010011': FSGNJN_S (s, rd, rs1, rs2)
elif f7_f3_ == '0010000_010_1010011': FSGNJX_S (s, rd, rs1, rs2)
elif f7_f3_ == '0010100_000_1010011': FMIN_S (s, rd, rs1, rs2)
elif f7_f3_ == '0010100_001_1010011': FMAX_S (s, rd, rs1, rs2)
elif f7_f3_ == '1010000_010_1010011': FEQ_S (s, rd, rs1, rs2)
elif f7_f3_ == '1010000_001_1010011': FLT_S (s, rd, rs1, rs2)
elif f7_f3_ == '1010000_000_1010011': FLE_S (s, rd, rs1, rs2)
elif f7_rs2 == '0101100_00000_000_1010011': FSQRT_S (s, rd, rs1)
elif f7_rs2 == '1100000_00000_000_1010011': FCVT_W_S (s, rd, rs1)
elif f7_rs2 == '1100000_00001_000_1010011': FCVT_WU_S(s, rd, rs1)
elif f7_rs2 == '1110000_00000_000_1010011': FMV_X_W (s, rd, rs1)
elif f7_rs2 == '1110000_00000_001_1010011': FCLASS_S (s, rd, rs1)
elif f7_rs2 == '1101000_00000_000_1010011': FCVT_S_W (s, rd, rs1)
elif f7_rs2 == '1101000_00001_000_1010011': FCVT_S_WU(s, rd, rs1)
elif f7_rs2 == '1111000_00000_000_1010011': FMV_W_X (s, rd, rs1)
else:
print('ERROR: this instruction is not supported: ' + str(inst))
#-------------------------------------------------------------------------------
# encode instruction (this is the inverse function of the dec() function above)
#-------------------------------------------------------------------------------
def r_type(f7, f3, opcode, rd, rs1, rs2):
return pack('bin:7, uint:5, uint:5, bin:3, uint:5, bin:7',
f7, rs2, rs1, f3, rd, opcode)
def r4_type(f2, f3, opcode, rd, rs1, rs2, rs3):
return pack('uint:5, bin:2, uint:5, uint:5, bin:3, uint:5, bin:7',
rs3, f2, rs2, rs1, f3, rd, opcode)
def i_type(f3, opcode, rd, rs1, imm):
return pack('int:12, uint:5, bin:3, uint:5, bin:7', imm, rs1, f3, rd, opcode)
def i_ty_u(f3, opcode, rd, rs1, imm):
"""same as i_type, but imm is unsigned (only needed for sltiu)"""
return pack('uint:12, uint:5, bin:3, uint:5, bin:7', imm, rs1, f3, rd, opcode)
def s_type(f3, opcode, rs2, imm, rs1):
im = Bits(int=imm, length=12)
imm11_5 = field(im, 11, 5).uint
imm4_0 = field(im, 4, 0).uint
return pack('uint:7, uint:5, uint:5, bin:3, uint:5, bin:7',
imm11_5, rs2, rs1, f3, imm4_0, opcode)
def b_type(f3, opcode, rs1, rs2, imm):
im = Bits(int=imm, length=13)
imm12 = field(im, 12, 12).uint
imm10_5 = field(im, 10, 5).uint
imm4_1 = field(im, 4, 1).uint
imm11 = field(im, 11, 11).uint
return pack('uint:1, uint:6, uint:5, uint:5, bin:3, uint:4, uint:1, bin:7',
imm12, imm10_5, rs2, rs1, f3, imm4_1, imm11, opcode)
def u_type(opcode, rd, imm):
return pack('int:20, uint:5, bin:7', imm, rd, opcode)
def j_type(opcode, rd, imm):
im = Bits(int=imm, length=21)
imm20 = field(im, 20, 20).uint
imm10_1 = field(im, 10, 1).uint
imm11 = field(im, 11, 11).uint
imm19_12 = field(im, 19, 12).uint
return pack('uint:1, uint:10, uint:1, uint:8, uint:5, bin:7',
imm20, imm10_1, imm11, imm19_12, rd, opcode)
# TODOs:
# - refactor enc() and dec() so that each opcode is written only
# once (not twice)
# - consider rewriting the bitstring packing/unpacking code, there
# is perhaps a better way than bitstring (numpy's 'packbits' only
# works on uint8)
def enc(s, inst, arg1, arg2, arg3=0, arg4=0):
"""encode instruction and write into mem[]"""
if inst == 'lui' : st = u_type('0110111', arg1, arg2)
elif inst == 'auipc': st = u_type('0010111', arg1, arg2)
elif inst == 'jal' : st = j_type('1101111', arg1, arg2)
elif inst == 'jalr' : st = i_type('000', '1100111', arg1, arg2, arg3)
elif inst == 'beq' : st = b_type('000', '1100011', arg1, arg2, arg3)
elif inst == 'bne' : st = b_type('001', '1100011', arg1, arg2, arg3)
elif inst == 'blt' : st = b_type('100', '1100011', arg1, arg2, arg3)
elif inst == 'bge' : st = b_type('101', '1100011', arg1, arg2, arg3)
elif inst == 'bltu' : st = b_type('110', '1100011', arg1, arg2, arg3)
elif inst == 'bgeu' : st = b_type('111', '1100011', arg1, arg2, arg3)
# note that arg2 and arg3 for i_type are swapped for l* load instructions
elif inst == 'lb' : st = i_type('000', '0000011', arg1, arg3, arg2)
elif inst == 'lh' : st = i_type('001', '0000011', arg1, arg3, arg2)
elif inst == 'lw' : st = i_type('010', '0000011', arg1, arg3, arg2)
elif inst == 'lbu' : st = i_type('100', '0000011', arg1, arg3, arg2)
elif inst == 'lhu' : st = i_type('101', '0000011', arg1, arg3, arg2)
elif inst == 'sb' : st = s_type('000', '0100011', arg1, arg2, arg3)
elif inst == 'sh' : st = s_type('001', '0100011', arg1, arg2, arg3)
elif inst == 'sw' : st = s_type('010', '0100011', arg1, arg2, arg3)
elif inst == 'addi' : st = i_type('000', '0010011', arg1, arg2, arg3)
elif inst == 'slti' : st = i_type('010', '0010011', arg1, arg2, arg3)
elif inst == 'sltiu': st = i_ty_u('011', '0010011', arg1, arg2, arg3)
elif inst == 'xori' : st = i_type('100', '0010011', arg1, arg2, arg3)
elif inst == 'ori' : st = i_type('110', '0010011', arg1, arg2, arg3)
elif inst == 'andi' : st = i_type('111', '0010011', arg1, arg2, arg3)
# use r-type (instead of i-type) for below 3 instructions
elif inst == 'slli' : st = r_type('0000000', '001', '0010011', arg1, arg2, arg3)
elif inst == 'srli' : st = r_type('0000000', '101', '0010011', arg1, arg2, arg3)
elif inst == 'srai' : st = r_type('0100000', '101', '0010011', arg1, arg2, arg3)
elif inst == 'add' : st = r_type('0000000', '000', '0110011', arg1, arg2, arg3)
elif inst == 'sub' : st = r_type('0100000', '000', '0110011', arg1, arg2, arg3)
elif inst == 'sll' : st = r_type('0000000', '001', '0110011', arg1, arg2, arg3)
elif inst == 'slt' : st = r_type('0000000', '010', '0110011', arg1, arg2, arg3)
elif inst == 'sltu' : st = r_type('0000000', '011', '0110011', arg1, arg2, arg3)
elif inst == 'xor' : st = r_type('0000000', '100', '0110011', arg1, arg2, arg3)
elif inst == 'srl' : st = r_type('0000000', '101', '0110011', arg1, arg2, arg3)
elif inst == 'sra' : st = r_type('0100000', '101', '0110011', arg1, arg2, arg3)
elif inst == 'or' : st = r_type('0000000', '110', '0110011', arg1, arg2, arg3)
elif inst == 'and' : st = r_type('0000000', '111', '0110011', arg1, arg2, arg3)
# M-extension
elif inst == 'mul' : st = r_type('0000001', '000', '0110011', arg1, arg2, arg3)
elif inst == 'mulh' : st = r_type('0000001', '001', '0110011', arg1, arg2, arg3)
elif inst == 'mulhsu': st = r_type('0000001', '010', '0110011', arg1, arg2, arg3)
elif inst == 'mulhu' : st = r_type('0000001', '011', '0110011', arg1, arg2, arg3)
elif inst == 'div' : st = r_type('0000001', '100', '0110011', arg1, arg2, arg3)
elif inst == 'divu' : st = r_type('0000001', '101', '0110011', arg1, arg2, arg3)
elif inst == 'rem' : st = r_type('0000001', '110', '0110011', arg1, arg2, arg3)
elif inst == 'remu' : st = r_type('0000001', '111', '0110011', arg1, arg2, arg3)
# F-extension
elif inst == 'flw.s' : st = i_type('010', '0000111', arg1, arg3, arg2) # arg swapped
elif inst == 'fsw.s' : st = s_type('010', '0100111', arg1, arg2, arg3)
elif inst == 'fmadd.s' : st = r4_type('00', '000', '1000011', arg1,arg2,arg3,arg4)
elif inst == 'fmsub.s' : st = r4_type('00', '000', '1000111', arg1,arg2,arg3,arg4)
elif inst == 'fnmsub.s' : st = r4_type('00', '000', '1001011', arg1,arg2,arg3,arg4)
elif inst == 'fnmadd.s' : st = r4_type('00', '000', '1001111', arg1,arg2,arg3,arg4)
elif inst == 'fadd.s' : st = r_type('0000000', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fsub.s' : st = r_type('0000100', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fmul.s' : st = r_type('0001000', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fdiv.s' : st = r_type('0001100', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fsgnj.s' : st = r_type('0010000', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fsgnjn.s' : st = r_type('0010000', '001', '1010011', arg1, arg2, arg3)
elif inst == 'fsgnjx.s' : st = r_type('0010000', '010', '1010011', arg1, arg2, arg3)
elif inst == 'fmin.s' : st = r_type('0010100', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fmax.s' : st = r_type('0010100', '001', '1010011', arg1, arg2, arg3)
elif inst == 'feq.s' : st = r_type('1010000', '010', '1010011', arg1, arg2, arg3)
elif inst == 'flt.s' : st = r_type('1010000', '001', '1010011', arg1, arg2, arg3)
elif inst == 'fle.s' : st = r_type('1010000', '000', '1010011', arg1, arg2, arg3)
elif inst == 'fsqrt.s' : st = r_type('0101100', '000', '1010011', arg1, arg2, 0)
elif inst == 'fcvt.w.s' : st = r_type('1100000', '000', '1010011', arg1, arg2, 0)
elif inst == 'fcvt.wu.s': st = r_type('1100000', '000', '1010011', arg1, arg2, 1)
elif inst == 'fmv.x.w' : st = r_type('1110000', '000', '1010011', arg1, arg2, 0)
elif inst == 'fclass.s' : st = r_type('1110000', '001', '1010011', arg1, arg2, 0)
elif inst == 'fcvt.s.w' : st = r_type('1101000', '000', '1010011', arg1, arg2, 0)
elif inst == 'fcvt.s.wu': st = r_type('1101000', '000', '1010011', arg1, arg2, 1)
elif inst == 'fmv.w.x' : st = r_type('1111000', '000', '1010011', arg1, arg2, 0)
else:
print('ERROR: this instruction is not supported ' + inst)
# write instruction into memory at address 's.pc'
write_i32(s, st.int, s.pc)
_pc(s)
#-------------------------------------------------------------------------------
# execute code from address 'start', stop execution after n instructions
#-------------------------------------------------------------------------------
def exe(s, start, instructions):
s.pc = start
for i in range(0, instructions):
inst = read_i32(s, s.pc)
dec(Bits(uint=int(_u(inst)), length=32))
#-------------------------------------------------------------------------------
# assembler mnemonics
#-------------------------------------------------------------------------------
x0 = 0; x1 = 1; x2 = 2; x3 = 3; x4 = 4; x5 = 5; x6 = 6; x7 = 7
x8 = 8; x9 = 9; x10 = 10; x11 = 11; x12 = 12; x13 = 13; x14 = 14; x15 = 15
x16 = 16; x17 = 17; x18 = 18; x19 = 19; x20 = 20; x21 = 21; x22 = 22; x23 = 23
x24 = 24; x25 = 25; x26 = 26; x27 = 27; x28 = 28; x29 = 29; x30 = 30; x31 = 31
zero= 0; ra = 1; sp = 2; gp = 3; tp = 4; t0 = 5; t1 = 6; t2 = 7; fp = 8
s0 = 8; s1 = 9; a0 = 10; a1 = 11; a2 = 12; a3 = 13; a4 = 14; a5 = 15
a6 = 16; a7 = 17; s2 = 18; s3 = 19; s4 = 20; s5 = 21; s6 = 22; s7 = 23
s8 = 24; s9 = 25; s10 = 26; s11 = 27; t3 = 28; t4 = 29; t5 = 30; t6 = 31
# for F-extension only
f0 = 0; f1 = 1; f2 = 2; f3 = 3; f4 = 4; f5 = 5; f6 = 6; f7 = 7
f8 = 8; f9 = 9; f10 = 10; f11 = 11; f12 = 12; f13 = 13; f14 = 14; f15 = 15
f16 = 16; f17 = 17; f18 = 18; f19 = 19; f20 = 20; f21 = 21; f22 = 22; f23 = 23
f24 = 24; f25 = 25; f26 = 26; f27 = 27; f28 = 28; f29 = 29; f30 = 30; f31 = 31
ft0 = 0; ft1 = 1; ft2 = 2; ft3 = 3; ft4 = 4; ft5 = 5; ft6 = 6; ft7 = 7
fs0 = 8; fs1 = 9; fa0 = 10; fa1 = 11; fa2 = 12; fa3 = 13; fa4 = 14; fa5 = 15
fa6 = 16; fa7 = 17; fs2 = 18; fs3 = 19; fs4 = 20; fs5 = 21; fs6 = 22; fs7 = 23
fs8 = 24; fs9 = 25; fs10 = 26; fs11 = 27; ft8 = 28; ft9 = 29; ft10 = 30; ft11 = 31
#-------------------------------------------------------------------------------
# pseudoinstructions
#-------------------------------------------------------------------------------
def LI(s, rd, imm):
LUI (s, rd, imm >> 12)
ADDI(s, rd, rd, imm & 0xfff)
# TODO: add more pseudoinstructions