-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
144 lines (117 loc) · 4.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import glob
import json
import logging
import fnmatch
import os
import sys
if os.path.exists('/mnt/localssd/'):
os.environ['TRANSFORMERS_CACHE'] = '/mnt/localssd/cache'
from lm_eval import tasks, evaluator
logging.getLogger("openai").setLevel(logging.WARNING)
def _is_json_task(task_name):
return task_name == "json" or task_name.startswith("json=")
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0 and not _is_json_task(
value
):
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='hf-auto')
parser.add_argument("--model_alias", type=str, default='okapi-rlhf')
parser.add_argument("--task_alias", type=str, default='open_llm')
parser.add_argument("--model_args", type=str, required=True)
parser.add_argument("--tasks", default='arc_vi,mmlu_vi,hellaswag_vi', required=True)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--device", type=str, default='cuda')
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=float, default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.")
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
if _is_json_task(pattern):
task_names.add(pattern)
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return sorted(list(task_names))
def main():
args = parse_args()
print(args.model)
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
task_names = args.tasks.split(',')
task_names = pattern_match(task_names, tasks.ALL_TASKS)
# output_filename = f'{args.task_alias}-{args.model_alias}.json'
base_model = args.model_args.split("pretrained=")[1].replace("/", "+").split(",peft")[0]
if ",peft=" in args.model_args:
peft_model = args.model_args.split(",peft=")[1].replace("/", "+")
name = base_model+"#"+peft_model
else:
name = base_model
output_filename = f'{name}.json'
output_file = os.path.join('logs', output_filename)
existing_output_files = glob.glob('logs/*.json') + glob.glob('logs/*/*.json')
existing_filenames = [os.path.basename(x) for x in existing_output_files]
# if output_filename in existing_filenames:
# i = existing_filenames.index(output_filename)
# print(f"Skipping {args.task_alias}. Log file exists at {existing_output_files[i]}")
# return
print(f"Model : {args.model}")
print(f"Model args: {args.model_args}")
print(f"Saving in: {output_filename}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
results = evaluator.open_llm_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
batch_size=args.batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
)
dumped = json.dumps(results, indent=2)
with open(output_file, 'w') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
if args.output_path:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f:
f.write(dumped)
print(evaluator.make_table(results))
print(f"Model evaluated: {args.model_args}")
print("#"*100)
if __name__ == "__main__":
main()