diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..a9f70f1 --- /dev/null +++ b/.gitignore @@ -0,0 +1,138 @@ +output_dir/ +outputs/ +selected/ + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class +**/*.pyc + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + +# custom +/data +.vscode +.idea +*.pkl +*.pkl.json +*.log.json +benchlist.txt +work_dirs/ + +# Pytorch +*.pth + +# Profile +*.prof + +# lmdb +*.mdb + +# unignore some data file in tests/data +!tests/data/**/*.pkl +!tests/data/**/*.pkl.json +!tests/data/**/*.log.json +!tests/data/**/*.pth + +# avoid soft links created by MIM +mmaction/configs/* +mmaction/tools/* diff --git a/README.md b/README.md index ce47ebb..5e540bb 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,99 @@ # MaskAlign -> This is the official repository for paper "Stare at What You See: Masked Image Modeling without Reconstruction". -Stay tuned for new details! +

+statistics +

+ + +This is the official PyTorch repository for paper [Stare at What You See: Masked Image Modeling without Reconstruction](https://arxiv.org/abs/2211.08887): +``` +@article{xue2022stare, + title={Stare at What You See: Masked Image Modeling without Reconstruction}, + author={Xue, Hongwei and Gao, Peng and Li, Hongyang and Qiao, Yu and Sun, Hao and Li, Houqiang and Luo, Jiebo}, + journal={arXiv preprint arXiv:2211.08887}, + year={2022} +} +``` + +* This repo is a modification on the [MAE repo](https://github.com/facebookresearch/mae). Installation and preparation follow that repo. + +* The teacher models in this repo are called from [Huggingface](https://huggingface.co/). Please install transformers package by running:
`pip install transformers`. + +## Pre-training + +To pre-train ViT-base (recommended default) with **distributed training**, run the following on 8 GPUs: + +``` +python -m torch.distributed.launch --nproc_per_node=8 main_pretrain.py \ + --batch_size 128 \ + --model mae_vit_base_patch16 \ + --blr 1.5e-4 \ + --min_lr 1e-5 \ + --data_path ${IMAGENET_DIR} \ + --output_dir ${OUTPUT_DIR} \ + --target_norm whiten \ + --loss_type smoothl1 \ + --drop_path 0.1 \ + --head_type linear \ + --epochs 200 \ + --warmup_epochs 20 \ + --mask_type attention \ + --mask_ratio 0.7 \ + --loss_weights top5 \ + --fusion_type linear \ + --teacher_model openai/clip-vit-base-patch16 +``` + +- Here the effective batch size is 128 (`batch_size` per gpu) * 8 (gpus) = 1024. If memory or # gpus is limited, use `--accum_iter` to maintain the effective batch size, which is `batch_size` (per gpu) * `nodes` * 8 (gpus) * `accum_iter`. +- `blr` is the base learning rate. The actual `lr` is computed by the [linear scaling rule](https://arxiv.org/abs/1706.02677): `lr` = `blr` * effective batch size / 256. +- This repo will automatically resume the checkpoints by keeping a "latest checkpoint". + +To train ViT-Large, please set `--model mae_vit_large_patch16` and `--drop_path 0.2`. Currently, this repo supports three teacher models: `--teacher_model ${TEACHER}`, where `${TEACHER} in openai/clip-vit-base-patch16, openai/clip-vit-large-patch14 and facebook/dino-vitb16`. + +## Fine-tuning + +Get our pre-trained checkpoints from [here](TODO). + +To fine-tune ViT-base (recommended default) with **distributed training**, run the following on 8 GPUs: +``` +python -m torch.distributed.launch --nproc_per_node=8 main_finetune.py \ + --epochs 100 \ + --batch_size 128 \ + --model vit_base_patch16 \ + --blr 3e-4 \ + --layer_decay 0.55 \ + --weight_decay 0.05 \ + --drop_path 0.2 \ + --reprob 0.25 \ + --mixup 0.8 \ + --cutmix 1.0 \ + --dist_eval \ + --finetune ${PT_CHECKPOINT} \ + --data_path ${IMAGENET_DIR} \ + --output_dir ${OUTPUT_DIR} +``` + +- Here the effective batch size is 128 (`batch_size` per gpu) * 8 (gpus) = 1024. +- `blr` is the base learning rate. The actual `lr` is computed by the [linear scaling rule](https://arxiv.org/abs/1706.02677): `lr` = `blr` * effective batch size / 256. + +To fine-tune ViT-Large, please set `--model vit_large_patch16 --epochs 50 --drop_path 0.4 --layer_decay 0.75 --blr 3e-4`. + + +## Linear Probing + +Run the following on 8 GPUs: +``` +python -m torch.distributed.launch --nproc_per_node=8 main_linprobe.py \ + --epochs 90 \ + --batch_size 2048 \ + --model vit_base_patch16 \ + --blr 0.025 \ + --weight_decay 0.0 \ + --dist_eval \ + --finetune ${PT_CHECKPOINT} \ + --data_path ${IMAGENET_DIR} \ + --output_dir ${OUTPUT_DIR} +``` +- Here the effective batch size is 2048 (`batch_size` per gpu) * 8 (gpus) = 16384. +- `blr` is the base learning rate. The actual `lr` is computed by the [linear scaling rule](https://arxiv.org/abs/1706.02677): `lr` = `blr` * effective batch size / 256. + diff --git a/engine_finetune.py b/engine_finetune.py new file mode 100644 index 0000000..cfa9bd5 --- /dev/null +++ b/engine_finetune.py @@ -0,0 +1,130 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import math +import sys +from typing import Iterable, Optional + +import torch + +from timm.data import Mixup +from timm.utils import accuracy + +import util.misc as misc +import util.lr_sched as lr_sched + + +def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, + mixup_fn: Optional[Mixup] = None, log_writer=None, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + print_freq = 20 + + accum_iter = args.accum_iter + + optimizer.zero_grad() + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) + + samples = samples.to(device, non_blocking=True) + targets = targets.to(device, non_blocking=True) + + if mixup_fn is not None: + samples, targets = mixup_fn(samples, targets) + + with torch.cuda.amp.autocast(): + outputs = model(samples) + loss = criterion(outputs, targets) + + loss_value = loss.item() + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, clip_grad=max_norm, + parameters=model.parameters(), create_graph=False, + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + # torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + min_lr = 10. + max_lr = 0. + for group in optimizer.param_groups: + min_lr = min(min_lr, group["lr"]) + max_lr = max(max_lr, group["lr"]) + + metric_logger.update(lr=max_lr) + + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: + """ We use epoch_1000x as the x-axis in tensorboard. + This calibrates different curves when batch size changes. + """ + epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) + log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', max_lr, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def evaluate(data_loader, model, device): + criterion = torch.nn.CrossEntropyLoss() + + metric_logger = misc.MetricLogger(delimiter=" ") + header = 'Test:' + + # switch to evaluation mode + model.eval() + + for batch in metric_logger.log_every(data_loader, 10, header): + images = batch[0] + target = batch[-1] + images = images.to(device, non_blocking=True) + target = target.to(device, non_blocking=True) + + # compute output + with torch.cuda.amp.autocast(): + output = model(images) + loss = criterion(output, target) + + acc1, acc5 = accuracy(output, target, topk=(1, 5)) + + batch_size = images.shape[0] + metric_logger.update(loss=loss.item()) + metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) + metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' + .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) + + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} diff --git a/engine_pretrain.py b/engine_pretrain.py new file mode 100644 index 0000000..0a566aa --- /dev/null +++ b/engine_pretrain.py @@ -0,0 +1,95 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import math +import sys +from typing import Iterable + +import torch + +import util.misc as misc +import util.lr_sched as lr_sched + + +def train_one_epoch(model: torch.nn.Module, + data_loader: Iterable, optimizer: torch.optim.Optimizer, + device: torch.device, epoch: int, loss_scaler, + log_writer=None, + args=None): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) + header = 'Epoch: [{}]'.format(epoch) + print_freq = 20 + + accum_iter = args.accum_iter + + optimizer.zero_grad() + + if log_writer is not None: + print('log_dir: {}'.format(log_writer.log_dir)) + + for data_iter_step, (samples, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) + + samples = samples.to(device, non_blocking=True) + + with torch.cuda.amp.autocast(): + loss = model(samples, mask_ratio=args.mask_ratio) + + # handle multiple losses + if isinstance(loss, list): + loss_list = [i.item() for i in loss] + loss = sum(loss) + else: + loss_list = None + + loss_value = loss.item() + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler(loss, optimizer, parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + # torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + + # handle multiple losses: 2 + if loss_list is not None: + assert len(loss_list) == 2 + metric_logger.update(loss1=loss_list[0]) + metric_logger.update(loss2=loss_list[1]) + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: + """ We use epoch_1000x as the x-axis in tensorboard. + This calibrates different curves when batch size changes. + """ + epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) + log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x) + log_writer.add_scalar('lr', lr, epoch_1000x) + + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} \ No newline at end of file diff --git a/figs/framework.png b/figs/framework.png new file mode 100644 index 0000000..821dabd Binary files /dev/null and b/figs/framework.png differ diff --git a/main_finetune.py b/main_finetune.py new file mode 100644 index 0000000..90d2c0d --- /dev/null +++ b/main_finetune.py @@ -0,0 +1,363 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import argparse +import datetime +import json +import numpy as np +import os +import time +from pathlib import Path + +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter + +import timm + +assert timm.__version__ == "0.3.2" # version check +from timm.models.layers import trunc_normal_ +from timm.data.mixup import Mixup +from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy + +import util.lr_decay as lrd +import util.misc as misc +from util.datasets import build_dataset_jpg +from util.pos_embed import interpolate_pos_embed +from util.misc import NativeScalerWithGradNormCount as NativeScaler + +import models_vit + +from engine_finetune import train_one_epoch, evaluate + + +def get_args_parser(): + parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False) + parser.add_argument('--batch_size', default=64, type=int, + help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') + parser.add_argument('--epochs', default=50, type=int) + parser.add_argument('--accum_iter', default=1, type=int, + help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') + + # Model parameters + parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL', + help='Name of model to train') + + parser.add_argument('--input_size', default=224, type=int, + help='images input size') + + parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', + help='Drop path rate (default: 0.1)') + + # Optimizer parameters + parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', + help='Clip gradient norm (default: None, no clipping)') + parser.add_argument('--weight_decay', type=float, default=0.05, + help='weight decay (default: 0.05)') + + parser.add_argument('--lr', type=float, default=None, metavar='LR', + help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', + help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--layer_decay', type=float, default=0.75, + help='layer-wise lr decay from ELECTRA/BEiT') + + parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0') + + parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', + help='epochs to warmup LR') + + # Augmentation parameters + parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', + help='Color jitter factor (enabled only when not using Auto/RandAug)') + parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', + help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), + parser.add_argument('--smoothing', type=float, default=0.1, + help='Label smoothing (default: 0.1)') + + # * Random Erase params + parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', + help='Random erase prob (default: 0.25)') + parser.add_argument('--remode', type=str, default='pixel', + help='Random erase mode (default: "pixel")') + parser.add_argument('--recount', type=int, default=1, + help='Random erase count (default: 1)') + parser.add_argument('--resplit', action='store_true', default=False, + help='Do not random erase first (clean) augmentation split') + + # * Mixup params + parser.add_argument('--mixup', type=float, default=0, + help='mixup alpha, mixup enabled if > 0.') + parser.add_argument('--cutmix', type=float, default=0, + help='cutmix alpha, cutmix enabled if > 0.') + parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, + help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') + parser.add_argument('--mixup_prob', type=float, default=1.0, + help='Probability of performing mixup or cutmix when either/both is enabled') + parser.add_argument('--mixup_switch_prob', type=float, default=0.5, + help='Probability of switching to cutmix when both mixup and cutmix enabled') + parser.add_argument('--mixup_mode', type=str, default='batch', + help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') + + # * Finetuning params + parser.add_argument('--finetune', default='', + help='finetune from checkpoint') + parser.add_argument('--global_pool', action='store_true') + parser.set_defaults(global_pool=True) + parser.add_argument('--cls_token', action='store_false', dest='global_pool', + help='Use class token instead of global pool for classification') + + # Dataset parameters + parser.add_argument('--data_path', default='/mnt/petrelfs/share/imagenet/images', type=str, + help='dataset path') + parser.add_argument('--nb_classes', default=1000, type=int, + help='number of the classification types') + + parser.add_argument('--output_dir', default='', + help='path where to save, empty for no saving') + parser.add_argument('--log_dir', default='', + help='path where to tensorboard log') + parser.add_argument('--device', default='cuda', + help='device to use for training / testing') + parser.add_argument('--seed', default=0, type=int) + parser.add_argument('--resume', default='', + help='resume from checkpoint') + parser.add_argument('--auto_resume', action='store_true') + parser.set_defaults(auto_resume=True) + + parser.add_argument('--start_epoch', default=0, type=int, metavar='N', + help='start epoch') + parser.add_argument('--eval', action='store_true', + help='Perform evaluation only') + parser.add_argument('--dist_eval', action='store_true', default=False, + help='Enabling distributed evaluation (recommended during training for faster monitor') + parser.add_argument('--num_workers', default=10, type=int) + parser.add_argument('--pin_mem', action='store_true', + help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') + parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') + parser.set_defaults(pin_mem=True) + + # distributed training parameters + parser.add_argument('--world_size', default=1, type=int, + help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_on_itp', action='store_true') + parser.add_argument('--dist_url', default='env://', + help='url used to set up distributed training') + + return parser + + +def main(args): + misc.init_distributed_mode(args) + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = torch.device(args.device) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + dataset_train = build_dataset_jpg(is_train=True, args=args) + dataset_val = build_dataset_jpg(is_train=False, args=args) + + if True: # args.distributed: + num_tasks = misc.get_world_size() + global_rank = misc.get_rank() + sampler_train = torch.utils.data.DistributedSampler( + dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + if args.dist_eval: + if len(dataset_val) % num_tasks != 0: + print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' + 'This will slightly alter validation results as extra duplicate entries are added to achieve ' + 'equal num of samples per-process.') + sampler_val = torch.utils.data.DistributedSampler( + dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias + else: + sampler_val = torch.utils.data.SequentialSampler(dataset_val) + else: + sampler_train = torch.utils.data.RandomSampler(dataset_train) + sampler_val = torch.utils.data.SequentialSampler(dataset_val) + + if global_rank == 0 and args.log_dir is not None and len(args.log_dir) > 0 and not args.eval: + os.makedirs(args.log_dir, exist_ok=True) + log_writer = SummaryWriter(log_dir=args.log_dir) + else: + log_writer = None + + data_loader_train = torch.utils.data.DataLoader( + dataset_train, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=args.pin_mem, + drop_last=True, + ) + + data_loader_val = torch.utils.data.DataLoader( + dataset_val, sampler=sampler_val, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=args.pin_mem, + drop_last=False + ) + + mixup_fn = None + mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None + if mixup_active: + print("Mixup is activated!") + mixup_fn = Mixup( + mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, + prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, + label_smoothing=args.smoothing, num_classes=args.nb_classes) + + model = models_vit.__dict__[args.model]( + num_classes=args.nb_classes, + drop_path_rate=args.drop_path, + global_pool=args.global_pool, + ) + + if args.finetune and not args.eval: + checkpoint = torch.load(args.finetune, map_location='cpu') + + print("Load pre-trained checkpoint from: %s" % args.finetune) + checkpoint_model = checkpoint['model'] + state_dict = model.state_dict() + for k in ['head.weight', 'head.bias']: + if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: + print(f"Removing key {k} from pretrained checkpoint") + del checkpoint_model[k] + + # interpolate position embedding + interpolate_pos_embed(model, checkpoint_model) + + # load pre-trained model + msg = model.load_state_dict(checkpoint_model, strict=False) + print(msg) + + if args.global_pool: + assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} + else: + assert set(msg.missing_keys) == {'head.weight', 'head.bias'} + + # manually initialize fc layer + trunc_normal_(model.head.weight, std=2e-5) + + model.to(device) + + model_without_ddp = model + n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) + + print("Model = %s" % str(model_without_ddp)) + print('number of params (M): %.2f' % (n_parameters / 1.e6)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) + model_without_ddp = model.module + + # build optimizer with layer-wise lr decay (lrd) + param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay, + no_weight_decay_list=model_without_ddp.no_weight_decay(), + layer_decay=args.layer_decay + ) + optimizer = torch.optim.AdamW(param_groups, lr=args.lr) + loss_scaler = NativeScaler() + + if mixup_fn is not None: + # smoothing is handled with mixup label transform + criterion = SoftTargetCrossEntropy() + elif args.smoothing > 0.: + criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) + else: + criterion = torch.nn.CrossEntropyLoss() + + print("criterion = %s" % str(criterion)) + + misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if args.eval: + test_stats = evaluate(data_loader_val, model, device) + print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") + exit(0) + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + max_accuracy = 0.0 + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + data_loader_train.sampler.set_epoch(epoch) + train_stats = train_one_epoch( + model, criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + args.clip_grad, mixup_fn, + log_writer=log_writer, + args=args + ) + if args.output_dir: + misc.save_model_latest( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + if args.output_dir and (epoch % 99 == 0 or epoch + 1 == args.epochs): + misc.save_model( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + test_stats = evaluate(data_loader_val, model, device) + print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") + max_accuracy = max(max_accuracy, test_stats["acc1"]) + print(f'Max accuracy: {max_accuracy:.2f}%') + + if log_writer is not None: + log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch) + log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch) + log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + **{f'test_{k}': v for k, v in test_stats.items()}, + 'epoch': epoch, + 'n_parameters': n_parameters} + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + main(args) diff --git a/main_linprobe.py b/main_linprobe.py new file mode 100644 index 0000000..35734cd --- /dev/null +++ b/main_linprobe.py @@ -0,0 +1,326 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# MoCo v3: https://github.com/facebookresearch/moco-v3 +# -------------------------------------------------------- + +import argparse +import datetime +import json +import numpy as np +import os +import time +from pathlib import Path + +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets + +import timm + +assert timm.__version__ == "0.3.2" # version check +from timm.models.layers import trunc_normal_ + +import util.misc as misc +from util.pos_embed import interpolate_pos_embed +from util.misc import NativeScalerWithGradNormCount as NativeScaler +from util.lars import LARS +from util.crop import RandomResizedCrop + +import models_vit + +from util.datasets import ImageNet1k_JPG +from engine_finetune import train_one_epoch, evaluate + + +def get_args_parser(): + parser = argparse.ArgumentParser('MAE linear probing for image classification', add_help=False) + parser.add_argument('--batch_size', default=512, type=int, + help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') + parser.add_argument('--epochs', default=90, type=int) + parser.add_argument('--accum_iter', default=1, type=int, + help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') + + # Model parameters + parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL', + help='Name of model to train') + + # Optimizer parameters + parser.add_argument('--weight_decay', type=float, default=0, + help='weight decay (default: 0 for linear probe following MoCo v1)') + + parser.add_argument('--lr', type=float, default=None, metavar='LR', + help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=0.1, metavar='LR', + help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0') + + parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N', + help='epochs to warmup LR') + + # * Finetuning params + parser.add_argument('--finetune', default='', + help='finetune from checkpoint') + parser.add_argument('--global_pool', action='store_true') + parser.set_defaults(global_pool=False) + parser.add_argument('--cls_token', action='store_false', dest='global_pool', + help='Use class token instead of global pool for classification') + + # Dataset parameters + parser.add_argument('--data_path', default='/mnt/petrelfs/share/imagenet/images', type=str, + help='dataset path') + parser.add_argument('--nb_classes', default=1000, type=int, + help='number of the classification types') + + parser.add_argument('--output_dir', default='', + help='path where to save, empty for no saving') + parser.add_argument('--log_dir', default='', + help='path where to tensorboard log') + parser.add_argument('--device', default='cuda', + help='device to use for training / testing') + parser.add_argument('--seed', default=0, type=int) + parser.add_argument('--resume', default='', + help='resume from checkpoint') + parser.add_argument('--auto_resume', action='store_true') + parser.set_defaults(auto_resume=True) + + parser.add_argument('--start_epoch', default=0, type=int, metavar='N', + help='start epoch') + parser.add_argument('--eval', action='store_true', + help='Perform evaluation only') + parser.add_argument('--dist_eval', action='store_true', default=False, + help='Enabling distributed evaluation (recommended during training for faster monitor') + parser.add_argument('--num_workers', default=4, type=int) + parser.add_argument('--pin_mem', action='store_true', + help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') + parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') + parser.set_defaults(pin_mem=True) + + # distributed training parameters + parser.add_argument('--world_size', default=1, type=int, + help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_on_itp', action='store_true') + parser.add_argument('--dist_url', default='env://', + help='url used to set up distributed training') + + return parser + + +def main(args): + misc.init_distributed_mode(args) + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = torch.device(args.device) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + # linear probe: weak augmentation + transform_train = transforms.Compose([ + RandomResizedCrop(224, interpolation=3), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + transform_val = transforms.Compose([ + transforms.Resize(256, interpolation=3), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + # dataset_train = datasets.ImageFolder(os.path.join(args.data_path, 'train'), transform=transform_train) + # dataset_val = datasets.ImageFolder(os.path.join(args.data_path, 'val'), transform=transform_val) + dataset_train = ImageNet1k_JPG(image_root=os.path.join(args.data_path, 'train'), meta_path=os.path.join(args.data_path, 'meta', 'train.txt'), transform=transform_train) + dataset_val = ImageNet1k_JPG(image_root=os.path.join(args.data_path, 'val'), meta_path=os.path.join(args.data_path, 'meta', 'val.txt'), transform=transform_val) + print(dataset_train) + print(dataset_val) + + if True: # args.distributed: + num_tasks = misc.get_world_size() + global_rank = misc.get_rank() + sampler_train = torch.utils.data.DistributedSampler( + dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + if args.dist_eval: + if len(dataset_val) % num_tasks != 0: + print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' + 'This will slightly alter validation results as extra duplicate entries are added to achieve ' + 'equal num of samples per-process.') + sampler_val = torch.utils.data.DistributedSampler( + dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias + else: + sampler_val = torch.utils.data.SequentialSampler(dataset_val) + else: + sampler_train = torch.utils.data.RandomSampler(dataset_train) + sampler_val = torch.utils.data.SequentialSampler(dataset_val) + + if global_rank == 0 and args.log_dir is not None and len(args.log_dir) > 0 and not args.eval: + os.makedirs(args.log_dir, exist_ok=True) + log_writer = SummaryWriter(log_dir=args.log_dir) + else: + log_writer = None + + data_loader_train = torch.utils.data.DataLoader( + dataset_train, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=args.pin_mem, + drop_last=True, + ) + + data_loader_val = torch.utils.data.DataLoader( + dataset_val, sampler=sampler_val, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=args.pin_mem, + drop_last=False + ) + + model = models_vit.__dict__[args.model]( + num_classes=args.nb_classes, + global_pool=args.global_pool, + ) + + if args.finetune and not args.eval: + checkpoint = torch.load(args.finetune, map_location='cpu') + + print("Load pre-trained checkpoint from: %s" % args.finetune) + checkpoint_model = checkpoint['model'] + state_dict = model.state_dict() + for k in ['head.weight', 'head.bias']: + if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: + print(f"Removing key {k} from pretrained checkpoint") + del checkpoint_model[k] + + # interpolate position embedding + interpolate_pos_embed(model, checkpoint_model) + + # load pre-trained model + msg = model.load_state_dict(checkpoint_model, strict=False) + print(msg) + + if args.global_pool: + assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} + else: + assert set(msg.missing_keys) == {'head.weight', 'head.bias'} + + # manually initialize fc layer: following MoCo v3 + trunc_normal_(model.head.weight, std=0.01) + + # for linear prob only + # hack: revise model's head with BN + model.head = torch.nn.Sequential(torch.nn.BatchNorm1d(model.head.in_features, affine=False, eps=1e-6), model.head) + # freeze all but the head + for _, p in model.named_parameters(): + p.requires_grad = False + for _, p in model.head.named_parameters(): + p.requires_grad = True + + model.to(device) + + model_without_ddp = model + n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) + + print("Model = %s" % str(model_without_ddp)) + print('number of params (M): %.2f' % (n_parameters / 1.e6)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) + model_without_ddp = model.module + + optimizer = LARS(model_without_ddp.head.parameters(), lr=args.lr, weight_decay=args.weight_decay) + print(optimizer) + loss_scaler = NativeScaler() + + criterion = torch.nn.CrossEntropyLoss() + + print("criterion = %s" % str(criterion)) + + misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + if args.eval: + test_stats = evaluate(data_loader_val, model, device) + print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") + exit(0) + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + max_accuracy = 0.0 + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + data_loader_train.sampler.set_epoch(epoch) + train_stats = train_one_epoch( + model, criterion, data_loader_train, + optimizer, device, epoch, loss_scaler, + max_norm=None, + log_writer=log_writer, + args=args + ) + if args.output_dir: + misc.save_model_latest( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + if args.output_dir and (epoch % 10 == 0 or epoch + 1 == args.epochs): + misc.save_model( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + test_stats = evaluate(data_loader_val, model, device) + print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") + max_accuracy = max(max_accuracy, test_stats["acc1"]) + print(f'Max accuracy: {max_accuracy:.2f}%') + + if log_writer is not None: + log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch) + log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch) + log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch) + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + **{f'test_{k}': v for k, v in test_stats.items()}, + 'epoch': epoch, + 'n_parameters': n_parameters} + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + main(args) diff --git a/main_pretrain.py b/main_pretrain.py new file mode 100644 index 0000000..ac0e2d3 --- /dev/null +++ b/main_pretrain.py @@ -0,0 +1,253 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import numpy as np +import os +import time +from pathlib import Path + +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter +import torchvision.transforms as transforms +import torchvision.datasets as datasets + +import timm + +assert timm.__version__ == "0.3.2" # version check +import timm.optim.optim_factory as optim_factory + +import util.misc as misc +from util.misc import NativeScalerWithGradNormCount as NativeScaler + +import models_pretrain as models_mae + +from engine_pretrain import train_one_epoch +from util.datasets import ImageNet1k_JPG + + +def get_args_parser(): + parser = argparse.ArgumentParser('MAE pre-training', add_help=False) + + # Add new args + parser.add_argument('--loss_weights', default="mean", type=str, + help='Loss weights of each block in ViT.') + parser.add_argument('--mask_type', default="random", type=str, + help='Mask type in random, attention.') + parser.add_argument('--fusion_type', default="simple", type=str, + help='Fusion type in distillation.') + parser.add_argument('--target_norm', default="none", type=str, + help='target norm type in teacher model.') + parser.add_argument('--loss_type', default="l2", type=str, + help='loss type for feature reconstruction.') + parser.add_argument('--head_type', default="linear", type=str, + help='head type for feature reconstruction.') + parser.add_argument('--teacher_model', default="openai/clip-vit-base-patch16", type=str, + help='teacher model for feature reconstruction.') + + parser.add_argument('--batch_size', default=64, type=int, + help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') + parser.add_argument('--epochs', default=400, type=int) + parser.add_argument('--accum_iter', default=1, type=int, + help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') + + # Model parameters + parser.add_argument('--model', default='mae_vit_large_patch16', type=str, metavar='MODEL', + help='Name of model to train') + + parser.add_argument('--input_size', default=224, type=int, + help='images input size') + + parser.add_argument('--mask_ratio', default=0.75, type=float, + help='Masking ratio (percentage of removed patches).') + + parser.add_argument('--norm_pix_loss', action='store_true', + help='Use (per-patch) normalized pixels as targets for computing loss') + parser.set_defaults(norm_pix_loss=False) + + parser.add_argument('--drop_path', type=float, default=0., + help='drop path rate (default: 0.)') + + # Optimizer parameters + parser.add_argument('--weight_decay', type=float, default=0.05, + help='weight decay (default: 0.05)') + + parser.add_argument('--lr', type=float, default=None, metavar='LR', + help='learning rate (absolute lr)') + parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', + help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') + parser.add_argument('--min_lr', type=float, default=0., metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0') + + parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', + help='epochs to warmup LR') + + # Dataset parameters + parser.add_argument('--data_path', default='/mnt/petrelfs/share/imagenet/images', type=str, + help='dataset path') + + parser.add_argument('--output_dir', default='', + help='path where to save, empty for no saving') + parser.add_argument('--log_dir', default='', + help='path where to tensorboard log') + parser.add_argument('--device', default='cuda', + help='device to use for training / testing') + parser.add_argument('--seed', default=0, type=int) + parser.add_argument('--resume', default='', + help='resume from checkpoint') + parser.add_argument('--auto_resume', action='store_true') + parser.set_defaults(auto_resume=True) + + parser.add_argument('--start_epoch', default=0, type=int, metavar='N', + help='start epoch') + parser.add_argument('--num_workers', default=10, type=int) + parser.add_argument('--pin_mem', action='store_true', + help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') + parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') + parser.set_defaults(pin_mem=True) + + # distributed training parameters + parser.add_argument('--world_size', default=1, type=int, + help='number of distributed processes') + parser.add_argument('--local_rank', default=-1, type=int) + parser.add_argument('--dist_on_itp', action='store_true') + parser.add_argument('--dist_url', default='env://', + help='url used to set up distributed training') + + return parser + + +def main(args): + misc.init_distributed_mode(args) + + print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(', ', ',\n')) + + device = torch.device(args.device) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + # simple augmentation + transform_train = transforms.Compose([ + transforms.RandomResizedCrop(args.input_size, scale=(0.2, 1.0), interpolation=3), # 3 is bicubic + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + dataset_train = ImageNet1k_JPG(image_root=os.path.join(args.data_path, 'train'), meta_path=os.path.join(args.data_path, 'meta', 'train.txt'), transform=transform_train) + print(dataset_train) + + if True: # args.distributed: + num_tasks = misc.get_world_size() + global_rank = misc.get_rank() + sampler_train = torch.utils.data.DistributedSampler( + dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + else: + sampler_train = torch.utils.data.RandomSampler(dataset_train) + + if global_rank == 0 and args.log_dir is not None and len(args.log_dir) > 0: + os.makedirs(args.log_dir, exist_ok=True) + log_writer = SummaryWriter(log_dir=args.log_dir) + else: + log_writer = None + + data_loader_train = torch.utils.data.DataLoader( + dataset_train, sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=args.pin_mem, + drop_last=True, + ) + + # define the model + model = models_mae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss, drop_path_rate=args.drop_path, \ + loss_weights=args.loss_weights, loss_type=args.loss_type, \ + mask_type=args.mask_type, fusion_type=args.fusion_type, target_norm=args.target_norm, + head_type=args.head_type, teacher_model=args.teacher_model) + + model.to(device) + + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay, skip_list=["distill_weights"]) + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + data_loader_train.sampler.set_epoch(epoch) + train_stats = train_one_epoch( + model, data_loader_train, + optimizer, device, epoch, loss_scaler, + log_writer=log_writer, + args=args + ) + if args.output_dir: + misc.save_model_latest( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + if args.output_dir and (epoch % 50 == 0 or epoch + 1 == args.epochs): + misc.save_model( + args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, + loss_scaler=loss_scaler, epoch=epoch) + + log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, + 'epoch': epoch,} + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('Training time {}'.format(total_time_str)) + + +if __name__ == '__main__': + args = get_args_parser() + args = args.parse_args() + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + main(args) diff --git a/models_pretrain.py b/models_pretrain.py new file mode 100644 index 0000000..4ded48f --- /dev/null +++ b/models_pretrain.py @@ -0,0 +1,392 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- + +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F +from timm.models.vision_transformer import PatchEmbed, Block + +from util.pos_embed import get_2d_sincos_pos_embed +from transformers import CLIPVisionModel, ViTModel +import pdb + + +def resize_pos_embed(x): + # [256, C] -> [196, C] + C = x.shape[-1] + x = x.reshape(1, 16, 16, C).permute(0, 3, 1, 2) + x = F.interpolate(x, (14, 14), mode='bicubic', align_corners=False) + x = x.permute(0, 2, 3, 1).reshape(196, C) + return x + + +class MaskedAutoencoderViT(nn.Module): + """ Masked Autoencoder with VisionTransformer backbone + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, + embed_dim=1024, depth=24, num_heads=16, drop_path_rate=0., + mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False, + loss_weights="mean", mask_type="random", fusion_type="simple", target_norm="none", loss_type="l2", + head_type="linear", teacher_model="openai/clip-vit-base-patch16"): + super().__init__() + + assert loss_weights in ["mean", "out", "linear_decay"] or "top" in loss_weights or "mid" in loss_weights + self.loss_weights = loss_weights + assert mask_type in ["random", "attention"] + self.mask_type = mask_type + assert fusion_type in ["simple", "linear", "sum"] + self.fusion_type = fusion_type + assert target_norm in ["none", "l2", "whiten", "bn"] + self.target_norm = target_norm + assert loss_type in ["l2", "l1", "smoothl1"] + self.loss_type = loss_type + assert head_type in ["linear", "norm_linear", "mlp", "mlp2"] + self.head_type= head_type + # assert "clip" in teacher_model or "dino" in teacher_model + self.teacher_model_name = teacher_model + + # -------------------------------------------------------------------------- + # MAE encoder specifics + self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, drop_path=dpr[i]) + for i in range(depth)]) + self.norm = norm_layer(embed_dim) + + if "clip-vit-base-patch16" in self.teacher_model_name or "dino-vitb16" in self.teacher_model_name: + target_dim = 768 + teacher_depth = 12 + else: + target_dim = 1024 + teacher_depth = 24 + + if self.head_type == "linear": + self.distill_heads = nn.ModuleList([nn.Linear(embed_dim, target_dim) for i in range(teacher_depth)]) + elif self.head_type == "norm_linear": + self.distill_heads = nn.ModuleList([nn.Sequential( + norm_layer(embed_dim), + nn.Linear(embed_dim, target_dim) + ) + for i in range(teacher_depth)]) + elif self.head_type == "mlp": + self.distill_heads = nn.ModuleList([nn.Sequential( + nn.Linear(embed_dim, embed_dim), + nn.GELU(), + nn.Linear(embed_dim, target_dim) + ) + for i in range(teacher_depth)]) + elif self.head_type == "mlp2": + self.distill_heads = nn.ModuleList([nn.Sequential( + nn.Linear(embed_dim, embed_dim), + norm_layer(embed_dim), + nn.Linear(embed_dim, target_dim) + ) + for i in range(teacher_depth)]) + + if self.fusion_type == "linear": + # only len(student) == len(teacher) + self.distill_weights = nn.Parameter(torch.eye(len(self.blocks)) + 0.01, requires_grad=True) + elif self.fusion_type == "sum": + self.distill_weights = nn.Parameter(torch.ones(teacher_depth, len(self.blocks)) / len(self.blocks), requires_grad=True) + + self.initialize_weights() + + if "clip" in self.teacher_model_name: + self.clip_model = CLIPVisionModel.from_pretrained(self.teacher_model_name) + for name, param in self.clip_model.named_parameters(): + param.requires_grad = False + if "clip-vit-large-patch14" in self.teacher_model_name and "position_embedding" in name: + param.data = torch.cat([param.data[:1], resize_pos_embed(param.data[1:])], dim=0) + if "clip-vit-large-patch14" in self.teacher_model_name: + self.clip_model.vision_model.embeddings.position_ids = torch.arange(197).expand((1, -1)) + + elif "dino" in self.teacher_model_name: + self.dino_model = ViTModel.from_pretrained(self.teacher_model_name) + for param in self.dino_model.parameters(): + param.requires_grad = False + + def initialize_weights(self): + # initialization + # initialize (and freeze) pos_embed by sin-cos embedding + pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) + self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) + + # initialize patch_embed like nn.Linear (instead of nn.Conv2d) + w = self.patch_embed.proj.weight.data + torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) + + # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) + torch.nn.init.normal_(self.cls_token, std=.02) + # torch.nn.init.normal_(self.mask_token, std=.02) + + # initialize nn.Linear and nn.LayerNorm + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + # we use xavier_uniform following official JAX ViT: + torch.nn.init.xavier_uniform_(m.weight) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def denormalize(self, images, type="imagenet"): + # sr_images [B, 3, H, W] + mean = torch.tensor([0.485, 0.456, 0.406], device=images.device).view(1, 3, 1, 1).type_as(images) + std = torch.tensor([0.229, 0.224, 0.225], device=images.device).view(1, 3, 1, 1).type_as(images) + return std*images + mean + + def normalize(self, images, type="clip"): + # images [B, 3, h, w] + mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=images.device).view(1, 3, 1, 1).type_as(images) + std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=images.device).view(1, 3, 1, 1).type_as(images) + return (images - mean) / std + + def patchify(self, imgs): + """ + imgs: (N, 3, H, W) + x: (N, L, patch_size**2 *3) + """ + p = self.patch_embed.patch_size[0] + assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 + + h = w = imgs.shape[2] // p + x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) + x = torch.einsum('nchpwq->nhwpqc', x) + x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) + return x + + def unpatchify(self, x): + """ + x: (N, L, patch_size**2 *3) + imgs: (N, 3, H, W) + """ + p = self.patch_embed.patch_size[0] + h = w = int(x.shape[1]**.5) + assert h * w == x.shape[1] + + x = x.reshape(shape=(x.shape[0], h, w, p, p, 3)) + x = torch.einsum('nhwpqc->nchpwq', x) + imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p)) + return imgs + + def random_masking(self, x, mask_ratio): + """ + Perform per-sample random masking by per-sample shuffling. + Per-sample shuffling is done by argsort random noise. + x: [N, L, D], sequence + """ + N, L, D = x.shape # batch, length, dim + len_keep = int(L * (1 - mask_ratio)) + + noise = torch.rand(N, L, device=x.device) # noise in [0, 1] + + # sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove + ids_restore = torch.argsort(ids_shuffle, dim=1) + + # keep the first subset + ids_keep = ids_shuffle[:, :len_keep] + x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) + + # generate the binary mask: 0 is keep, 1 is remove + mask = torch.ones([N, L], device=x.device) + mask[:, :len_keep] = 0 + # unshuffle to get the binary mask + mask = torch.gather(mask, dim=1, index=ids_restore) + + return x_masked, ids_keep + + def attention_masking(self, x, mask_ratio, importance): + """ + Perform per-sample random masking by per-sample shuffling. + Per-sample shuffling is done by argsort random noise. + x: [N, L, D], sequence + """ + N, L, D = x.shape # batch, length, dim + len_keep = int(L * (1 - mask_ratio)) + + noise = importance.to(x.device) # large is keep, small is remove + + # sort noise for each sample + ids_shuffle = torch.multinomial(noise, L, replacement=False) + ids_restore = torch.argsort(ids_shuffle, dim=1) + + # keep the first subset + ids_keep = ids_shuffle[:, :len_keep] + ids_dump = ids_shuffle[:, len_keep:] + x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) + + # generate the binary mask: 0 is keep, 1 is remove + mask = torch.ones([N, L], device=x.device) + mask[:, :len_keep] = 0 + # unshuffle to get the binary mask + mask = torch.gather(mask, dim=1, index=ids_restore) + + return x_masked, ids_keep + + def forward_encoder(self, x, mask_ratio, attentions): + # embed patches + x = self.patch_embed(x) + + # add pos embed w/o cls token + x = x + self.pos_embed[:, 1:, :] + + # masking: length -> length * mask_ratio + if self.mask_type == "attention": + importance = attentions[-1][:, :, 0, 1:].mean(1) + x, ids_keep = self.attention_masking(x, mask_ratio, importance) + else: + x, ids_keep = self.random_masking(x, mask_ratio) + + cls_token = self.cls_token + self.pos_embed[:, :1, :] + cls_tokens = cls_token.expand(x.shape[0], -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + + hidden_states = [] + # apply Transformer blocks + for blk in self.blocks: + x = blk(x) + hidden_states.append(x) + x = self.norm(x) + + return hidden_states, ids_keep + + @torch.no_grad() + def forward_clip(self, x): + if "clip-vit-large-patch14" in self.teacher_model_name: + x = F.interpolate(x, (196, 196), mode='bicubic', align_corners=False) + + x = self.normalize(self.denormalize(x)) + input = { + "pixel_values": x, + "output_hidden_states": True, + "output_attentions": True + } + outputs = self.clip_model(**input) + + last_hidden_state, pooler_output, hidden_states, attentions = outputs[0], outputs[1], outputs[2], outputs[3] + return last_hidden_state, pooler_output, hidden_states, attentions + + @torch.no_grad() + def forward_dino(self, x): + input = { + "pixel_values": x, + "output_hidden_states": True, + "output_attentions": True + } + outputs = self.dino_model(**input) + + last_hidden_state, pooler_output, hidden_states, attentions = outputs[0], outputs[1], outputs[2], outputs[3] + return last_hidden_state, pooler_output, hidden_states, attentions + + + def get_student(self, hidden_states): + student = hidden_states + if self.fusion_type != "simple": + student = [x.unsqueeze(0) for x in student] + student = torch.cat(student, dim=0) + student = torch.einsum('ab,bcde->acde', self.distill_weights, student) + student = torch.chunk(student, student.shape[0], dim=0) + student = [x.squeeze(0) for x in student] + student = [self.distill_heads[i](x) for i, x in enumerate(student)] + return student + + def get_teacher(self, hidden_states, ids_keep): + teacher = [] + for i in range(1, len(hidden_states)): + y = hidden_states[i] + if self.target_norm == "l2": + y = F.normalize(y, dim=-1) + elif self.target_norm == "whiten": + y = F.layer_norm(y, (y.shape[-1],)) + elif self.target_norm == "bn": + y = (y - y.mean()) / (y.var() + 1.e-6)**.5 + cls = y[:, :1, :] + y = y[:, 1:, :] + y = torch.gather(y, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, y.shape[-1])) + teacher.append(torch.cat([cls, y], dim=1)) + return teacher + + def forward_loss(self, student, teacher): + """ + student: ([B*4, L//4, C]...) + teacher: ([B, 1+L, C]...) + ids_shuffle: [B, L] + """ + loss = torch.tensor(0., device=student[0].device) + + if self.loss_weights == "mean": + weight_list = [1/len(student)]*len(student) + elif self.loss_weights == "out": + weight_list = [0.]*(len(student)-1) + [1.] + elif self.loss_weights == "linear_decay": + weight_list_ = list(range(len(student))) + weight_list = [i / sum(weight_list_) for i in weight_list_] + elif "top" in self.loss_weights: # topk + topk = int(self.loss_weights[3:]) + weight_list = [0.] * (len(student)-topk) + [1/topk] * topk + elif "mid" in self.loss_weights: + mid = int(self.loss_weights[3:]) + weight_list = [0.] * mid + [1.] + [0.] * (len(student) - mid - 1) + + for i, x in enumerate(student): + y = teacher[i] + if weight_list[i] > 0: + if self.loss_type == "l2": + loss = loss + weight_list[i] * ((y - x) ** 2).mean() + elif self.loss_type == "smoothl1": + loss = loss + weight_list[i] * 2 * F.smooth_l1_loss(y, x) + elif self.loss_type == "l1": + loss = loss + weight_list[i] * F.l1_loss(y, x) + return loss + + def forward(self, imgs, mask_ratio=0.75): + if "clip" in self.teacher_model_name: + _, _, hidden_states_teacher, attentions = self.forward_clip(imgs) + elif "dino" in self.teacher_model_name: + _, _, hidden_states_teacher, attentions = self.forward_dino(imgs) + hidden_states, ids_keep = self.forward_encoder(imgs, mask_ratio, attentions) + student = self.get_student(hidden_states) + teacher = self.get_teacher(hidden_states_teacher, ids_keep) + loss = self.forward_loss(student, teacher) + return loss + + +def mae_vit_base_patch16(**kwargs): + model = MaskedAutoencoderViT( + patch_size=16, embed_dim=768, depth=12, num_heads=12, + mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + return model + + +def mae_vit_large_patch16(**kwargs): + model = MaskedAutoencoderViT( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, + mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + return model + + + +# set recommended archs +mae_vit_base_patch16 = mae_vit_base_patch16 +mae_vit_large_patch16 = mae_vit_large_patch16 + \ No newline at end of file diff --git a/models_vit.py b/models_vit.py new file mode 100644 index 0000000..e94591f --- /dev/null +++ b/models_vit.py @@ -0,0 +1,96 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- + +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F +import timm.models.vision_transformer + + +class VisionTransformer(timm.models.vision_transformer.VisionTransformer): + """ Vision Transformer with support for global average pooling + """ + def __init__(self, global_pool=False, **kwargs): + super(VisionTransformer, self).__init__(**kwargs) + + self.global_pool = global_pool + if self.global_pool: + norm_layer = kwargs['norm_layer'] + embed_dim = kwargs['embed_dim'] + self.fc_norm = norm_layer(embed_dim) + + del self.norm # remove the original norm + + def forward_features(self, x): + B = x.shape[0] + x = self.patch_embed(x) + + cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + x = x + self.pos_embed + x = self.pos_drop(x) + + for blk in self.blocks: + x = blk(x) + + if self.global_pool: + x = x[:, 1:, :].mean(dim=1) # global pool without cls token + outcome = self.fc_norm(x) + else: + x = self.norm(x) + outcome = x[:, 0] + + return outcome + + def extract_features(self, x): + B = x.shape[0] + x = self.patch_embed(x) + + cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + x = x + self.pos_embed + x = self.pos_drop(x) + + for blk in self.blocks: + x = blk(x) + + if self.global_pool: + x = x[:, 1:, :].mean(dim=1) # global pool without cls token + else: + x = x[:, 0] + + return x + + +def vit_base_patch16(**kwargs): + model = VisionTransformer( + patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, + norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + return model + + +def vit_large_patch16(**kwargs): + model = VisionTransformer( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, + norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + return model + + +def vit_huge_patch14(**kwargs): + model = VisionTransformer( + patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, + norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) + return model + + + diff --git a/util/crop.py b/util/crop.py new file mode 100644 index 0000000..fcb2612 --- /dev/null +++ b/util/crop.py @@ -0,0 +1,42 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math + +import torch + +from torchvision import transforms +from torchvision.transforms import functional as F + + +class RandomResizedCrop(transforms.RandomResizedCrop): + """ + RandomResizedCrop for matching TF/TPU implementation: no for-loop is used. + This may lead to results different with torchvision's version. + Following BYOL's TF code: + https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206 + """ + @staticmethod + def get_params(img, scale, ratio): + width, height = F._get_image_size(img) + area = height * width + + target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item() + log_ratio = torch.log(torch.tensor(ratio)) + aspect_ratio = torch.exp( + torch.empty(1).uniform_(log_ratio[0], log_ratio[1]) + ).item() + + w = int(round(math.sqrt(target_area * aspect_ratio))) + h = int(round(math.sqrt(target_area / aspect_ratio))) + + w = min(w, width) + h = min(h, height) + + i = torch.randint(0, height - h + 1, size=(1,)).item() + j = torch.randint(0, width - w + 1, size=(1,)).item() + + return i, j, h, w \ No newline at end of file diff --git a/util/datasets.py b/util/datasets.py new file mode 100644 index 0000000..b59e5ea --- /dev/null +++ b/util/datasets.py @@ -0,0 +1,94 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- + +import os +import glob +import PIL +import torch +from io import BytesIO +from PIL import Image +from torchvision import datasets, transforms + +from timm.data import create_transform +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD + + +class ImageNet1k_JPG(torch.utils.data.Dataset): + ''' + An ImageNet-1k dataset with caching support. + ''' + + def __init__(self, image_root, meta_path, transform): + self.transform = transform + + with open(meta_path) as f: + self.data_list = f.read().splitlines() + self.image_root = image_root + + def __len__(self): + return len(self.data_list) + + def __getitem__(self, idx): + line = self.data_list[idx] + path, label = line.split(' ') + + path = os.path.join(self.image_root, path) + label = int(label) + + image = Image.open(path).convert('RGB') + image = self.transform(image) + + return image, label + +def build_dataset_jpg(is_train, args): + transform = build_transform(is_train, args) + data_root = args.data_path + image_root = os.path.join(data_root, 'train' if is_train else 'val') + meta_path = os.path.join(data_root, 'meta', 'train.txt' if is_train else 'val.txt') + dataset = ImageNet1k_JPG(image_root, meta_path, transform) + print(f"Dataset at {meta_path}. Length of {len(dataset)}") + return dataset + +def build_transform(is_train, args): + mean = IMAGENET_DEFAULT_MEAN + std = IMAGENET_DEFAULT_STD + # train transform + if is_train: + # this should always dispatch to transforms_imagenet_train + transform = create_transform( + input_size=args.input_size, + is_training=True, + color_jitter=args.color_jitter, + auto_augment=args.aa, + interpolation='bicubic', + re_prob=args.reprob, + re_mode=args.remode, + re_count=args.recount, + mean=mean, + std=std, + ) + return transform + + # eval transform + t = [] + if args.input_size <= 224: + crop_pct = 224 / 256 + else: + crop_pct = 1.0 + size = int(args.input_size / crop_pct) + t.append( + transforms.Resize(size, interpolation=PIL.Image.BICUBIC), # to maintain same ratio w.r.t. 224 images + ) + t.append(transforms.CenterCrop(args.input_size)) + + t.append(transforms.ToTensor()) + t.append(transforms.Normalize(mean, std)) + return transforms.Compose(t) + diff --git a/util/lars.py b/util/lars.py new file mode 100644 index 0000000..509c5f6 --- /dev/null +++ b/util/lars.py @@ -0,0 +1,47 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# LARS optimizer, implementation from MoCo v3: +# https://github.com/facebookresearch/moco-v3 +# -------------------------------------------------------- + +import torch + + +class LARS(torch.optim.Optimizer): + """ + LARS optimizer, no rate scaling or weight decay for parameters <= 1D. + """ + def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, trust_coefficient=0.001): + defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, trust_coefficient=trust_coefficient) + super().__init__(params, defaults) + + @torch.no_grad() + def step(self): + for g in self.param_groups: + for p in g['params']: + dp = p.grad + + if dp is None: + continue + + if p.ndim > 1: # if not normalization gamma/beta or bias + dp = dp.add(p, alpha=g['weight_decay']) + param_norm = torch.norm(p) + update_norm = torch.norm(dp) + one = torch.ones_like(param_norm) + q = torch.where(param_norm > 0., + torch.where(update_norm > 0, + (g['trust_coefficient'] * param_norm / update_norm), one), + one) + dp = dp.mul(q) + + param_state = self.state[p] + if 'mu' not in param_state: + param_state['mu'] = torch.zeros_like(p) + mu = param_state['mu'] + mu.mul_(g['momentum']).add_(dp) + p.add_(mu, alpha=-g['lr']) \ No newline at end of file diff --git a/util/lr_decay.py b/util/lr_decay.py new file mode 100644 index 0000000..7fa11f1 --- /dev/null +++ b/util/lr_decay.py @@ -0,0 +1,76 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# ELECTRA https://github.com/google-research/electra +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import json + + +def param_groups_lrd(model, weight_decay=0.05, no_weight_decay_list=[], layer_decay=.75): + """ + Parameter groups for layer-wise lr decay + Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 + """ + param_group_names = {} + param_groups = {} + + num_layers = len(model.blocks) + 1 + + layer_scales = list(layer_decay ** (num_layers - i) for i in range(num_layers + 1)) + + for n, p in model.named_parameters(): + if not p.requires_grad: + continue + + # no decay: all 1D parameters and model specific ones + if p.ndim == 1 or n in no_weight_decay_list: + g_decay = "no_decay" + this_decay = 0. + else: + g_decay = "decay" + this_decay = weight_decay + + layer_id = get_layer_id_for_vit(n, num_layers) + group_name = "layer_%d_%s" % (layer_id, g_decay) + + if group_name not in param_group_names: + this_scale = layer_scales[layer_id] + + param_group_names[group_name] = { + "lr_scale": this_scale, + "weight_decay": this_decay, + "params": [], + } + param_groups[group_name] = { + "lr_scale": this_scale, + "weight_decay": this_decay, + "params": [], + } + + param_group_names[group_name]["params"].append(n) + param_groups[group_name]["params"].append(p) + + # print("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) + + return list(param_groups.values()) + + +def get_layer_id_for_vit(name, num_layers): + """ + Assign a parameter with its layer id + Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33 + """ + if name in ['cls_token', 'pos_embed']: + return 0 + elif name.startswith('patch_embed'): + return 0 + elif name.startswith('blocks'): + return int(name.split('.')[1]) + 1 + else: + return num_layers \ No newline at end of file diff --git a/util/lr_sched.py b/util/lr_sched.py new file mode 100644 index 0000000..4cb682b --- /dev/null +++ b/util/lr_sched.py @@ -0,0 +1,21 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math + +def adjust_learning_rate(optimizer, epoch, args): + """Decay the learning rate with half-cycle cosine after warmup""" + if epoch < args.warmup_epochs: + lr = args.lr * epoch / args.warmup_epochs + else: + lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ + (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) + for param_group in optimizer.param_groups: + if "lr_scale" in param_group: + param_group["lr"] = lr * param_group["lr_scale"] + else: + param_group["lr"] = lr + return lr diff --git a/util/misc.py b/util/misc.py new file mode 100644 index 0000000..0676a5c --- /dev/null +++ b/util/misc.py @@ -0,0 +1,373 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import builtins +import datetime +import os +import glob +import time +from collections import defaultdict, deque +from pathlib import Path + +import torch +import torch.distributed as dist +from torch._six import inf +import subprocess + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value) + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if v is None: + continue + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError("'{}' object has no attribute '{}'".format( + type(self).__name__, attr)) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append( + "{}: {}".format(name, str(meter)) + ) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None): + i = 0 + if not header: + header = '' + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt='{avg:.4f}') + data_time = SmoothedValue(fmt='{avg:.4f}') + space_fmt = ':' + str(len(str(len(iterable)))) + 'd' + log_msg = [ + header, + '[{0' + space_fmt + '}/{1}]', + 'eta: {eta}', + '{meters}', + 'time: {time}', + 'data: {data}' + ] + if torch.cuda.is_available(): + log_msg.append('max mem: {memory:.0f}') + log_msg = self.delimiter.join(log_msg) + MB = 1024.0 * 1024.0 + for obj in iterable: + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len(iterable) - 1: + eta_seconds = iter_time.global_avg * (len(iterable) - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print(log_msg.format( + i, len(iterable), eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB)) + else: + print(log_msg.format( + i, len(iterable), eta=eta_string, + meters=str(self), + time=str(iter_time), data=str(data_time))) + i += 1 + end = time.time() + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print('{} Total time: {} ({:.4f} s / it)'.format( + header, total_time_str, total_time / len(iterable))) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + builtin_print = builtins.print + + def print(*args, **kwargs): + force = kwargs.pop('force', False) + force = force or (get_world_size() > 8) + if is_master or force: + now = datetime.datetime.now().time() + builtin_print('[{}] '.format(now), end='') # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + if args.dist_on_itp: + args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) + args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) + args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) + args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) + os.environ['LOCAL_RANK'] = str(args.gpu) + os.environ['RANK'] = str(args.rank) + os.environ['WORLD_SIZE'] = str(args.world_size) + # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] + elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ['WORLD_SIZE']) + args.gpu = int(os.environ['LOCAL_RANK']) + else: + print('Not using distributed mode') + setup_for_distributed(is_master=True) # hack + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = 'nccl' + print('| distributed init (rank {}): {}, gpu {}'.format( + args.rank, args.dist_url, args.gpu), flush=True) + torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, + world_size=args.world_size, rank=args.rank) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +class NativeScalerWithGradNormCount: + state_dict_key = "amp_scaler" + + def __init__(self): + self._scaler = torch.cuda.amp.GradScaler() + + def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): + self._scaler.scale(loss).backward(create_graph=create_graph) + if update_grad: + if clip_grad is not None: + assert parameters is not None + self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place + norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) + else: + self._scaler.unscale_(optimizer) + norm = get_grad_norm_(parameters) + self._scaler.step(optimizer) + self._scaler.update() + else: + norm = None + return norm + + def state_dict(self): + return self._scaler.state_dict() + + def load_state_dict(self, state_dict): + self._scaler.load_state_dict(state_dict) + + +def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = [p for p in parameters if p.grad is not None] + norm_type = float(norm_type) + if len(parameters) == 0: + return torch.tensor(0.) + device = parameters[0].grad.device + if norm_type == inf: + total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) + else: + total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) + return total_norm + + +def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler): + output_dir = Path(args.output_dir) + epoch_name = str(epoch) + if loss_scaler is not None: + checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] + for checkpoint_path in checkpoint_paths: + to_save = { + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'epoch': epoch, + 'scaler': loss_scaler.state_dict(), + 'args': args, + } + + save_on_master(to_save, checkpoint_path) + else: + client_state = {'epoch': epoch} + model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) + +def save_model_latest(args, epoch, model, model_without_ddp, optimizer, loss_scaler): + output_dir = Path(args.output_dir) + epoch_name = str(epoch) + if loss_scaler is not None: + checkpoint_paths = [output_dir / 'checkpoint-latest.pth'] + for checkpoint_path in checkpoint_paths: + to_save = { + 'model': model_without_ddp.state_dict(), + 'optimizer': optimizer.state_dict(), + 'epoch': epoch, + 'scaler': loss_scaler.state_dict(), + 'args': args, + } + + save_on_master(to_save, checkpoint_path) + else: + client_state = {'epoch': epoch} + model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-latest", client_state=client_state) + print("Latest checkpoint saved.") + +def load_model(args, model_without_ddp, optimizer, loss_scaler): + output_dir = Path(args.output_dir) + if args.auto_resume and len(args.resume) == 0: + if os.path.exists(os.path.join(output_dir, 'checkpoint-latest.pth')): + args.resume = os.path.join(output_dir, 'checkpoint-latest.pth') + else: + all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) + latest_ckpt = -1 + for ckpt in all_checkpoints: + t = ckpt.split('-')[-1].split('.')[0] + if t.isdigit(): + latest_ckpt = max(int(t), latest_ckpt) + if latest_ckpt >= 0: + args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) + + print("Auto resume checkpoint: %s" % args.resume) + + if args.resume: + if args.resume.startswith('https'): + checkpoint = torch.hub.load_state_dict_from_url( + args.resume, map_location='cpu', check_hash=True) + else: + checkpoint = torch.load(args.resume, map_location='cpu') + model_without_ddp.load_state_dict(checkpoint['model']) + print("Resume checkpoint %s" % args.resume) + if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): + optimizer.load_state_dict(checkpoint['optimizer']) + args.start_epoch = checkpoint['epoch'] + 1 + if 'scaler' in checkpoint: + loss_scaler.load_state_dict(checkpoint['scaler']) + print("With optim & sched!") + + +def all_reduce_mean(x): + world_size = get_world_size() + if world_size > 1: + x_reduce = torch.tensor(x).cuda() + dist.all_reduce(x_reduce) + x_reduce /= world_size + return x_reduce.item() + else: + return x \ No newline at end of file diff --git a/util/pos_embed.py b/util/pos_embed.py new file mode 100644 index 0000000..6acf8bd --- /dev/null +++ b/util/pos_embed.py @@ -0,0 +1,96 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# Position embedding utils +# -------------------------------------------------------- + +import numpy as np + +import torch + +# -------------------------------------------------------- +# 2D sine-cosine position embedding +# References: +# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py +# MoCo v3: https://github.com/facebookresearch/moco-v3 +# -------------------------------------------------------- +def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): + """ + grid_size: int of the grid height and width + return: + pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + """ + grid_h = np.arange(grid_size, dtype=np.float32) + grid_w = np.arange(grid_size, dtype=np.float32) + grid = np.meshgrid(grid_w, grid_h) # here w goes first + grid = np.stack(grid, axis=0) + + grid = grid.reshape([2, 1, grid_size, grid_size]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if cls_token: + pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) + return pos_embed + + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=np.float) + omega /= embed_dim / 2. + omega = 1. / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + + +# -------------------------------------------------------- +# Interpolate position embeddings for high-resolution +# References: +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- +def interpolate_pos_embed(model, checkpoint_model): + if 'pos_embed' in checkpoint_model: + pos_embed_checkpoint = checkpoint_model['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.patch_embed.num_patches + num_extra_tokens = model.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + checkpoint_model['pos_embed'] = new_pos_embed