-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
126 lines (91 loc) · 4.13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from hyperparameters import *
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, input_dim, output_dim, seed=10, fc1_units=ACTOR_FC1_UNITS, fc2_units=ACTOR_FC2_UNITS):
"""Initialize parameters and build model.
Params
======
input_dim (int): Input dimension (Dimension of each state)
output_dim (int): Output dimension (Dimension of each action)
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.nonlin = NON_LIN
# Dense layers
self.fc1 = nn.Linear(input_dim, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, output_dim)
# Normalization layers
self.bn1 = nn.BatchNorm1d(fc1_units)
#self.bn2 = nn.BatchNorm1d(fc2_units)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
# Reshape the state to comply with Batch Normalization
if state.dim() == 1:
state = torch.unsqueeze(state,0)
h1 = self.nonlin(self.fc1(state))
h1 = self.bn1(h1) # Batch Normalization after Activation
h2 = self.nonlin(self.fc2(h1))
return F.tanh(self.fc3(h2))
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, input_dim, action_size, seed=10, fcs1_units=CRITIC_FCS1_UNITS, fc2_units=CRITIC_FC2_UNITS):
"""Initialize parameters and build model.
Params
======
input_dim (int): Input dimension (Dimension of each state)
action_size : Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.nonlin = NON_LIN
# Dense layers
# Vanilla DDPG architecture
#self.fcs1 = nn.Linear(input_dim, fcs1_units)
#self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
# Modified DDPG architecture
self.fcs1 = nn.Linear(input_dim+action_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
# Normalization layers
self.bn1 = nn.BatchNorm1d(fcs1_units)
#self.bn2 = nn.BatchNorm1d(fc2_units)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
# Reshape the state to comply with Batch Normalization
if state.dim() == 1:
state = torch.unsqueeze(state,0)
# Vanilla DDPG architecture
#xs = self.nonlin(self.fcs1(state))
###xs = self.bn1(xs) # Batch Normalization after Activation
#x = torch.cat((xs, action.float()), dim=1)
# Modified DDPG architecture
xs = torch.cat((state, action.float()), dim=1)
x = self.nonlin(self.fcs1(xs))
x = self.bn1(x) # Batch Normalization after Activation
x = self.nonlin(self.fc2(x))
return self.fc3(x)