-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
77 lines (59 loc) · 2.03 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import pickle
# Extract percent data
def extract_percents(data):
# Initialize percents
data_percents = []
# Loop and generate percent changes
for i in range(data.shape[0]):
try:
data_close1 = data["Close"][i]
i3 = i+1
data_close2 = data["Close"][i3]
data_percent_var = (data_close1 - data_close2)/data_close2
data_percents.append(data_percent_var)
except:
pass
# Return percents
return data_percents
# Load data
stock_data = pd.read_csv("stonk_data.csv")
# Load percents and remove last entry
extracted_percent_data = extract_percents(stock_data)
stock_data = stock_data[:-1]
stock_data["Percents"] = extracted_percent_data
# Reverse data
stock_data = stock_data[::-1].reset_index(drop=True)
# Convert date info to decimal form
# stock_data["Date"] = list(map(lambda t: time.mktime(date.fromisoformat(t).timetuple()), stock_data["Date"]))
# Remove date info
stock_data = stock_data.drop("Date", axis=1)
# Scale and separate data
scaler = StandardScaler()
processed_data = scaler.fit_transform(stock_data.drop("Close", axis=1).values)
# Add raw Close data back to dataset for sequencing
processed_data = np.column_stack((processed_data, stock_data["Close"].values))
# Sequence extractor
def extract_sequences(data, step_days=50):
# Empty sequence list
sequences = []
# Loop array and step
for i in range(len(data)):
# Check for end of window and array
if i + step_days + 1 > len(data):
break
# Add sequence
sequences.append(data[i:i+step_days])
# Return sequences
return np.asarray(sequences)
# Extract sequences
sequence_data = extract_sequences(processed_data)
# Derive result data
X_data = sequence_data
y_data = stock_data["Close"].values[50:].T
# print("X=%s, y=%s " % (X_data[0], y_data[0]))
# Save data
with open("processed_stonk_data", "wb") as f:
pickle.dump((X_data, y_data), f)