-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
116 lines (82 loc) · 3.68 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy
import random
from plot import prediction_error_plot
from neural_network import neural_network
from mnist_database import mnist_database
# TODO: Add verification on test data set.
database = mnist_database()
# prepare training data set
images = database.get_train_images()
labels = numpy.frombuffer(database.get_train_labels(), dtype = numpy.dtype(numpy.uint8))
image_height = database.image_height
image_width = database.image_width
output_classes = 10
if len(images) != len(labels):
raise ValueError('Train data set mismatch: {} labels, {} images'.format(len(images), len(labels)))
train_count = len(images)
train_data_set = []
# TODO: normalize using mean and standard deviation
pixel_type = numpy.dtype(numpy.uint8)
for i in range(train_count):
image = numpy.frombuffer(images[i], dtype = pixel_type)
image = (image - (numpy.iinfo(pixel_type).max - numpy.iinfo(pixel_type).min) / 2.0) / (numpy.iinfo(pixel_type).max - numpy.iinfo(pixel_type).min)
train_data_set.append((image, labels[i]))
random.shuffle(train_data_set)
# create neural network and set up parameters
learning_rate = 0.01
network_layers = [image_height * image_width, 256, 128, 128, output_classes]
print('Creating neural network with layers {}'.format(network_layers))
nn = neural_network(network_layers)
epochs = 256
batch_size = 32
plot = prediction_error_plot()
for epoch in range(epochs):
processed_train_image = 0
processed_train_image_error = 0
processed_error = 0.0
processed_batch = 0
print('Starting training epoch #{}'.format(epoch+1))
print('Batch size: {}'.format(batch_size))
print('Learning rate: {:.6f}'.format(learning_rate))
print('')
for i in range(train_count):
image = train_data_set[i][0]
label = train_data_set[i][1]
output = nn.propagate_forward(image)
correct = numpy.zeros((1, output_classes))
correct[(0, label)] = 1.0
# check prediction was correct
predicted_class = 0
predicted_value = 0
for j in range(output_classes):
if output[(0, j)] > predicted_value:
predicted_value = output[(0, j)]
predicted_class = j
processed_train_image += 1
# calculate error function
error_delta = numpy.asarray(output - correct)
error = error_delta / batch_size * learning_rate
nn.propagate_backward(error)
nn.update_delta()
processed_error += numpy.sum(numpy.abs(error_delta * error_delta))
if predicted_class != label:
processed_train_image_error += 1
# reset weights at the end of batch processing
if processed_train_image and processed_train_image % batch_size == 0:
nn.update_weights()
print('Weights delta: {}'.format(list(map (lambda x: float('%.4f' % x), nn.get_weights_delta()[0]))))
print('Weights bias delta: {}'.format(list(map (lambda x: float('%.4f' % x), nn.get_weights_delta()[0]))))
print('Batch total error: {:.4f}'.format(processed_error))
nn.reset_weights_delta()
processed_percentage_error = 100 * processed_train_image_error / processed_train_image
print('Prediction error: {:.0f}%'.format(100 * processed_train_image_error / processed_train_image))
processed_train_image = 0
processed_train_image_error = 0
processed_error = 0.0
processed_batch += 1
if processed_batch and processed_batch % 16 == 0:
plot.update(epoch + i * 1.0 / train_count, processed_percentage_error)
print
print('Training epoch #{} was completed.'.format(epoch+1))
print
print('Training was completed successfully')