-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
179 lines (160 loc) · 5.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import sys
sys.path.insert(0,'./')
from logger import setup_logger
from cityscapes import CityScapes
from loss import OhemCELoss
from evaluate import evaluate
from optimizer import Optimizer
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.distributed as dist
import os
import os.path as osp
import logging
import time
import datetime
import argparse
from shelfnet import ShelfNet
respth = './res'
if not osp.exists(respth): os.makedirs(respth)
logger = logging.getLogger()
def parse_args():
parse = argparse.ArgumentParser()
parse.add_argument(
'--local_rank',
dest = 'local_rank',
type = int,
default = -1,
)
return parse.parse_args()
def train():
args = parse_args()
torch.cuda.set_device(args.local_rank)
dist.init_process_group(
backend = 'nccl',
init_method = 'tcp://127.0.0.1:33241',
world_size = torch.cuda.device_count(),
rank=args.local_rank
)
setup_logger(respth)
## dataset
n_classes = 19
n_img_per_gpu = 8
n_workers = 4
cropsize = [1024, 1024]
ds = CityScapes('/data2/.encoding/data/cityscapes', cropsize=cropsize, mode='train')
sampler = torch.utils.data.distributed.DistributedSampler(ds)
dl = DataLoader(ds,
batch_size = n_img_per_gpu,
shuffle = False,
sampler = sampler,
num_workers = n_workers,
pin_memory = True,
drop_last = True)
## model
ignore_idx = 255
net = ShelfNet(n_classes=n_classes)
net.cuda()
net.train()
net = nn.parallel.DistributedDataParallel(net,
device_ids = [args.local_rank, ],
output_device = args.local_rank,
find_unused_parameters=True
)
score_thres = 0.7
n_min = n_img_per_gpu*cropsize[0]*cropsize[1]//16
LossP = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx)
Loss2 = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx)
Loss3 = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx)
## optimizer
momentum = 0.9
weight_decay = 5e-4
lr_start = 1e-2
max_iter = 80000
power = 0.9
warmup_steps = 1000
warmup_start_lr = 1e-5
optim = Optimizer(
model = net.module,
lr0 = lr_start,
momentum = momentum,
wd = weight_decay,
warmup_steps = warmup_steps,
warmup_start_lr = warmup_start_lr,
max_iter = max_iter,
power = power)
## train loop
msg_iter = 50
loss_avg = []
st = glob_st = time.time()
diter = iter(dl)
epoch = 0
for it in range(max_iter):
try:
im, lb = next(diter)
if not im.size()[0]==n_img_per_gpu: raise StopIteration
except StopIteration:
epoch += 1
sampler.set_epoch(epoch)
diter = iter(dl)
im, lb = next(diter)
im = im.cuda()
lb = lb.cuda()
H, W = im.size()[2:]
lb = torch.squeeze(lb, 1)
optim.zero_grad()
out, out16, out32 = net(im)
lossp = LossP(out, lb)
loss2 = Loss2(out16, lb)
loss3 = Loss3(out32, lb)
loss = lossp + loss2 + loss3
loss.backward()
optim.step()
loss_avg.append(loss.item())
## print training log message
if (it+1)%msg_iter==0:
loss_avg = sum(loss_avg) / len(loss_avg)
lr = optim.lr
ed = time.time()
t_intv, glob_t_intv = ed - st, ed - glob_st
eta = int((max_iter - it) * (glob_t_intv / it))
eta = str(datetime.timedelta(seconds=eta))
msg = ', '.join([
'it: {it}/{max_it}',
'lr: {lr:4f}',
'loss: {loss:.4f}',
'eta: {eta}',
'time: {time:.4f}',
]).format(
it = it+1,
max_it = max_iter,
lr = lr,
loss = loss_avg,
time = t_intv,
eta = eta
)
logger.info(msg)
loss_avg = []
st = ed
if it % 1000 == 0:
## dump the final model
save_pth = osp.join(respth, 'shelfnet_model_it_%d.pth'%it)
#net.cpu()
#state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict()
#if dist.get_rank() == 0: torch.save(state, save_pth)
torch.save(net.module.state_dict(),save_pth)
if it % 1000 == 0 and it > 0:
evaluate(checkpoint=save_pth)
## dump the final model
save_pth = osp.join(respth, 'model_final.pth')
net.cpu()
state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict()
if dist.get_rank()==0: torch.save(state, save_pth)
logger.info('training done, model saved to: {}'.format(save_pth))
if __name__ == "__main__":
train()
evaluate()