-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask_server.py
119 lines (92 loc) · 3.87 KB
/
flask_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
from flask import Flask, request
from flask_restplus import Api, Resource, fields
from catboost import CatBoostRegressor
import pandas as pd
import json
flask_app = Flask(__name__)
api = Api(app = flask_app,
version = "1.0",
title = "Example flask servise",
description = "Get prediction from some body params",
doc='/docs',
default='Predict',
default_label='Model Inference')
model_fields = api.model(
'PredictIn', {
'features': fields.Nested(
api.model('BodyParams', {
'height': fields.Float(required = True, description="Body height", help='This is to help you understand what to do'),
'weight': fields.Float(required = True, description="Body weight", help='This is to help you understand what to do'),
'age': fields.Float(required = True, description="Body age", help='This is to help you understand what to do'),
'sugar': fields.Float(required = True, description="Sugar in blodd", help='This is to help you understand what to do'),
})),
'modelVersion': fields.String(required=True, description='Model version', enum=['1.0'])})
response_fields = api.model('PredictOut', {
'Predicted output': fields.Float,
})
model = CatBoostRegressor()
model.load_model('models/catboost_regressor.cat')
@api.route('/api/predict/')
class MainClass(Resource):
@api.doc()
@api.expect(model_fields)
#@api.response(code=400, model=error_fields, description='Some other Error')
@api.response(code=200, model=response_fields, description='Success')
def post(self):
#try:
height = request.json['features']['height']
weight = request.json['features']['weight']
age = request.json['features']['age']
sugar = request.json['features']['sugar']
X = pd.DataFrame(data={'height':height, 'weight':weight, 'age':age, 'sugar':sugar}, index=[0])
pred = model.predict(X)
return {
"Predicted output": float(pred)
}, 200
if __name__ == '__main__':
flask_app.run(debug=False, host='0.0.0.0', port=7777)
### Error customization
'''
error_fields = api.model('ProblemDetails', {
'statusCode': fields.Integer,
'title': fields.String,
'message': fields.String,
'fields': fields.String,
})
class BaseError(Exception):
"""Base Error Class"""
def __init__(self, statusCode=400, title=None, message=None, fields=None):
Exception.__init__(self)
self.statusCode = statusCode
self.title = title
self.message = message
self.fields = fields
def to_dict(self):
return {'statusCode': self.statusCode,
'title': self.title,
'message': self.message,
'fields': self.fields}
class FieldError(BaseError):
def __init__(self, fields):
BaseError.__init__(self)
self.statusCode = 400
self.message = 'One or more data fields are incorrect'
self.title = 'FieldError'
self.fields = fields
@api.errorhandler(FieldError)
def handle_error(error):
return error.to_dict(), getattr(error, 'statusCode')
@api.errorhandler
def default_error_handler(error):
"""Returns Internal server error"""
error = ServerError()
return error.to_dict(), getattr(error, 'statusCode')
class ServerError(BaseError):
def __init__(self, message='Internal server error'):
BaseError.__init__(self)
self.statusCode = 400
self.message = 'The browser (or proxy) sent a request that this server could not understand.'
self.title = 'Bad request'
self.fields = None
'''