forked from yl4579/StyleTTS2
-
Notifications
You must be signed in to change notification settings - Fork 13
/
api.py
121 lines (112 loc) · 4.51 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# StyleTTS 2 HTTP Streaming API by @fakerybakery - Copyright (c) 2023 mrfakename. All rights reserved.
# Docs: API_DOCS.md
# To-Do:
# * Support voice cloning
# * Implement authentication, user "credits" system w/ SQLite3
import io
import os
import hashlib
import threading
import markdown
import re
import json
from tortoise.utils.text import split_and_recombine_text
from flask import Flask, Response, request, jsonify
from scipy.io.wavfile import write
import numpy as np
import ljinference
import msinference
import torch
from flask_cors import CORS
def genHeader(sampleRate, bitsPerSample, channels):
datasize = 2000 * 10**6
o = bytes("RIFF", "ascii")
o += (datasize + 36).to_bytes(4, "little")
o += bytes("WAVE", "ascii")
o += bytes("fmt ", "ascii")
o += (16).to_bytes(4, "little")
o += (1).to_bytes(2, "little")
o += (channels).to_bytes(2, "little")
o += (sampleRate).to_bytes(4, "little")
o += (sampleRate * channels * bitsPerSample // 8).to_bytes(4, "little")
o += (channels * bitsPerSample // 8).to_bytes(2, "little")
o += (bitsPerSample).to_bytes(2, "little")
o += bytes("data", "ascii")
o += (datasize).to_bytes(4, "little")
return o
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
voices = {}
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
print("Computing voices")
for v in voicelist:
voices[v] = msinference.compute_style(f'voices/{v}.wav')
print("Starting Flask app")
app = Flask(__name__)
cors = CORS(app)
@app.route("/")
def index():
with open('API_DOCS.md', 'r') as f:
return markdown.markdown(f.read())
def synthesize(text, voice, steps):
v = voice.lower()
return msinference.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1)
def ljsynthesize(text, steps):
return ljinference.inference(text, torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu'), diffusion_steps=7, embedding_scale=1)
# def ljsynthesize(text):
# texts = split_and_recombine_text(text)
# v = voice.lower()
# audios = []
# noise = torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu')
# for t in texts:
# audios.append(ljinference.inference(text, noise, diffusion_steps=7, embedding_scale=1))
# return np.concatenate(audios)
@app.route("/api/v1/stream", methods=['POST'])
def serve_wav_stream():
if 'text' not in request.form or 'voice' not in request.form:
error_response = {'error': 'Missing required fields. Please include "text" and "voice" in your request.'}
return jsonify(error_response), 400
text = request.form['text'].strip()
voice = request.form['voice'].strip().lower()
if not voice in voices:
error_response = {'error': 'Invalid voice selected'}
return jsonify(error_response), 400
v = voices[voice]
texts = split_and_recombine_text(text)
def generate():
wav_header = genHeader(24000, 16, 1)
is_first_chunk = True
for t in texts:
wav = msinference.inference(t, voice, alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)
output_buffer = io.BytesIO()
write(output_buffer, 24000, wav)
output_buffer.read(44)
if is_first_chunk:
data = wav_header + wav_file.read()
is_first_chunk = False
else:
data = wav_file.read()
yield data
return Response(generate(), mimetype="audio/x-wav")
@app.route("/api/v1/static", methods=['POST'])
def serve_wav():
if 'text' not in request.form or 'voice' not in request.form:
error_response = {'error': 'Missing required fields. Please include "text" and "voice" in your request.'}
return jsonify(error_response), 400
text = request.form['text'].strip()
voice = request.form['voice'].strip().lower()
if not voice in voices:
error_response = {'error': 'Invalid voice selected'}
return jsonify(error_response), 400
v = voices[voice]
texts = split_and_recombine_text(text)
audios = []
for t in texts:
audios.append(msinference.inference(t, voice, alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1))
output_buffer = io.BytesIO()
write(output_buffer, 24000, np.concatenate(audios))
response = Response(output_buffer.getvalue())
response.headers["Content-Type"] = "audio/wav"
return response
if __name__ == "__main__":
app.run("0.0.0.0")