Elliptic curves in Nemo

Jean Kieffer

École normale supérieure de Paris & INRIA

August 3, 2017

K ロンバイ (部) メイモンバ (理) メールを

 299

KORK ERKER ER AGA

[Motivation](#page-2-0)

- ² [An example in isogeny-based cryptography](#page-7-0)
	- **•** [Background](#page-8-0)
	- [Computations](#page-13-0)
- ³ [The EllipticCurves module](#page-28-0)
	- [Contents](#page-29-0)
	- [Further development](#page-35-0)

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

¹ [Motivation](#page-2-0)

- ² [An example in isogeny-based cryptography](#page-7-0) **•** [Background](#page-8-0)
	- **[Computations](#page-13-0)**
- [The EllipticCurves module](#page-28-0)
	- [Contents](#page-29-0)
	- **•** [Further development](#page-35-0)

000000

KORK STRAIN A BAR SHOP

Key exchange from hard homogeneous spaces

Let G be an abelian group acting on a set X with some given point x_0 . If the action is

- easy to compute (polynomial time),
- hard to invert (exponential time),

then there is an analogue of the Diffie–Hellman key exchange (Couveignes 2006).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The Couveignes–Rostovtsev–Stolbunov scheme

Question

Where can we find such an action?

KORK STRATER STRAKER

The Couveignes–Rostovtsev–Stolbunov scheme

Question

Where can we find such an action?

Answer (Couveignes 2006, Rostovtsev–Stolbunov 2006)

Use the action of a class group on a set of isogenous elliptic curves.

000000

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The Couveignes–Rostovtsev–Stolbunov scheme

Question

Where can we find such an action?

Answer (Couveignes 2006, Rostovtsev–Stolbunov 2006)

Use the action of a class group on a set of isogenous elliptic curves.

Goals

- **•** Explain what this means
- Describe the computations needed
- Discuss our EllipticCurves module in Nemo.

KORK STRAIN A BAR SHOP

[Motivation](#page-2-0)

- ² [An example in isogeny-based cryptography](#page-7-0)
	- **•** [Background](#page-8-0)
	- [Computations](#page-13-0)
	- [The EllipticCurves module](#page-28-0)
		- [Contents](#page-29-0)
		- **•** [Further development](#page-35-0)

000000

KORK ERKER ADE YOUR

Elliptic curves over k

 \bullet Elliptic curves over a field k are algebraic curves, e.g.

$$
E : y^2 = x^3 + ax + b.
$$

They have an abelian group structure. The j-invariant

$$
j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}
$$

classifies such curves up to isomorphism.

• Isogenies are nonzero morphisms. Our isogenies will be defined over k . If an isogeny is given by rational fractions of degree ℓ , it is called an ℓ -isogeny.

000000

KORK ERKER ADE YOUR

Complex multiplication

From now on, $k = \mathbb{F}_p$ is a prime finite field. Let E/\mathbb{F}_p be an ordinary elliptic curve.

• The ring $End(E)$ is isomorphic to an order in a quadratic number field. The Frobenius endomorphism is a distinguished element in $End(E)$.

100000

KORKAR KERKER E VOOR

Complex multiplication

From now on, $k = \mathbb{F}_p$ is a prime finite field. Let E/\mathbb{F}_p be an ordinary elliptic curve.

- The ring $End(E)$ is isomorphic to an order in a quadratic number field. The Frobenius endomorphism is a distinguished element in $End(E)$.
- Ideals of O modulo principal ideals form the *class group* of \mathcal{O} .

Isogenies of degree ℓ starting from E correspond to ideals in $\mathcal O$ of norm ℓ

For example, in the generic case, there are either zero or two isogenies of degree ℓ with domain E.

000000

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Action of the class group

Proposition

- There is an action of the class group on a set of elliptic curves.
- Ideals of norm ℓ act as ℓ -isogenies.
- This action is simply transitive.

Therefore, in our setting, isogeny graphs are just Cayley graphs of a certain group.

KOD KARD KED KED E YORA

Our isogeny graphs

Isogeny graph over \mathbb{F}_{173} with isogenies of degree 3 (blue) and 7 (red):

This graph is *much* larger for cryptographic uses.

200000

KORKAR KERKER EL VOLO

Representing isogenies

Let E/k be an elliptic curve, and $\ell \neq p$ be an odd prime. Giving the following is equivalent:

- An isogeny $E \to E'$ of degree ℓ
- Its kernel, which is a cyclic subgroup of E of order ℓ
- A polynomial of degree $\frac{\ell-1}{2}$ in x defining the kernel.

If we know this kernel polynomial, we can easily find E' using Vélu's formulas.

000000

KORK ERKER ADE YOUR

Representing ideals

We do *not* compute directly in the class group. Instead, we use the following representation of ideals:

If the ideal I has norm ℓ , we have a natural surjection

$$
\mathcal{O}/\ell\mathcal{O} \to \mathcal{O}/\ell\mathcal{O} \simeq \mathbb{Z}/\ell\mathbb{Z}.
$$

The ideal ℓ is determined by the tuple (ℓ, v) , where v is the image of the Frobenius under this surjection. We call v a Frobenius eigenvalue.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

General algorithm

Problem

Given E/\mathbb{F}_p and a prime ℓ , how can we compute the action of an ideal (ℓ, v) on E ?

000000

KORK ERKER ADE YOUR

General algorithm

Problem

Given E/\mathbb{F}_p and a prime ℓ , how can we compute the action of an ideal (ℓ, v) on E ?

Idea

The j-invariant we want is one of the two roots of a polynomial equation, called *modular equation*: $\Phi_{\ell}(j(E), Y) = 0$.

000000

General algorithm

Problem

Given E/\mathbb{F}_p and a prime ℓ , how can we compute the action of an ideal (ℓ, v) on E ?

Idea

The j-invariant we want is one of the two roots of a polynomial equation, called *modular equation*: $\Phi_{\ell}(j(E), Y) = 0$.

Algorithm

Let E be a curve and (ℓ, v) be an ideal.

- compute and solve this equation: find j_1 , j_2
- compute the kernel polynomial $K(x)$ of $E \rightarrow j_1$
- \bullet check if the Frobenius acts on it as scalar mult. by v: $(x^p, y^p) \stackrel{?}{=} [v] \cdot (x, y) \mod K(x)$ and curve equation.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Kernel computation

Question

How can we compute the kernel polynomial $K(x)$ of ϕ : $E \rightarrow j_1$?

000000

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Kernel computation

Question

How can we compute the kernel polynomial $K(x)$ of ϕ : $E \rightarrow j_1$?

Idea (Elkies)

The rational fraction defining ϕ satisfies a simple differential equation. $K(x)$ appears as the denominator.

000000

Kernel computation

Question

How can we compute the kernel polynomial $K(x)$ of ϕ : $E \rightarrow j_1$?

Idea (Elkies)

The rational fraction defining ϕ satisfies a simple differential equation. $K(x)$ appears as the denominator.

Algorithm (Bostan–Morain–Salvy–Schost 2008)

- Compute power series solutions of this ODE up to a certain precision with a Newton iteration
- Recover $K(x)$ using the Berlekamp–Massey rational reconstruction algorithm.

000000

KORK STRATER STRAKER

Using Vélu's formulas

Problem

Given E/\mathbb{F}_p and a prime $\ell \neq p$, how can we compute the curves linked to E by an ℓ -isogeny?

Finding roots of modular polynomials is costly : $\Phi_{\ell}(X, Y)$ has degree $\ell + 1$ in both variables.

000000

Using Vélu's formulas

Problem

Given E/\mathbb{F}_p and a prime $\ell \neq p$, how can we compute the curves linked to E by an ℓ -isogeny?

Finding roots of modular polynomials is costly : $\Phi_{\ell}(X, Y)$ has degree $\ell + 1$ in both variables.

Another solution

Suppose that K is a subgroup of order ℓ in E whose points are defined over \mathbb{F}_p .

- Look for ℓ -torsion points over \mathbb{F}_p to find K, using scalar multiplications
- Compute the curve E/K using Vélu's formulas.

The isogeny $E \to E/K$ has degree ℓ .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Using Vélu's formulas (2)

• The previous condition may be relaxed when allowing field extensions. But. . .

000000

KORK ERKER ADE YOUR

- The previous condition may be relaxed when allowing field extensions. But. . .
- Using Vélu's formulas is only efficient with small-degree extensions.

000000

KORK ERKER ADE YOUR

- The previous condition may be relaxed when allowing field extensions. But. . .
- Using Vélu's formulas is only efficient with small-degree extensions.
- Using efficient arithmetic on curves is important (use other models than Weierstrass equations)

000000

KORK ERKER ADE YOUR

- The previous condition may be relaxed when allowing field extensions. But. . .
- Using Vélu's formulas is only efficient with small-degree extensions.
- Using efficient arithmetic on curves is important (use other models than Weierstrass equations)
- Not every curve satisfies the previous conditions for many ℓ 's and small d's: we have to look for adequate curves.

200000

KORK ERKER ADE YOUR

- The previous condition may be relaxed when allowing field extensions. But. . .
- Using Vélu's formulas is only efficient with small-degree extensions.
- Using efficient arithmetic on curves is important (use other models than Weierstrass equations)
- Not every curve satisfies the previous conditions for many ℓ 's and small d's: we have to look for adequate curves.
- In practice, we have to use both the general algorithm and Vélu's formulas.

KOD KARD KED KED E YORA

[Motivation](#page-2-0)

- [An example in isogeny-based cryptography](#page-7-0) **•** [Background](#page-8-0)
	- **[Computations](#page-13-0)**
- ³ [The EllipticCurves module](#page-28-0)
	- [Contents](#page-29-0)
	- [Further development](#page-35-0)

00000

KORK ERKER ADE YOUR

What we would like to do

For the general method:

- Define elliptic curves over finite fields and general rings
- Define isogenies, scalar multiplication and isomorphisms
- Have a database of modular polynomials
- Find roots of polynomials over finite fields
- BMSS: ODEs in power series with Newton iterations and Berlekamp–Massey.

KORK ERKER ADE YOUR

What we would like to do

For the general method:

- Define elliptic curves over finite fields and general rings
- Define isogenies, scalar multiplication and isomorphisms
- Have a database of modular polynomials
- Find roots of polynomials over finite fields
- BMSS: ODEs in power series with Newton iterations and Berlekamp–Massey.

For Vélu's formulas:

- Define points on elliptic curves and arithmetic operations with efficient models
- Extensions of finite fields.

 00000

KORK ERKER ADE YOUR

What we would like to do

For the general method:

- Define elliptic curves over finite fields and general rings
- Define isogenies, scalar multiplication and isomorphisms
- Have a database of modular polynomials
- Find roots of polynomials over finite fields
- BMSS: ODEs in power series with Newton iterations and Berlekamp–Massey.
- For Vélu's formulas:
	- Define points on elliptic curves and arithmetic operations with efficient models
	- Extensions of finite fields.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Three ways to compute scalar multiplications

Three ways to compute scalar multiplications

Sol. 1 (Nemo)

```
E = Weierstrass(...)
Fext, = FiniteField(p, d, "alpha")
Text = baseextend(E. Text)P = rand(Ext)pˆd * P
```
Sol. 2 (Nemo)

```
E = Montgomery(...)
Fext, = FiniteField(p, d, "alpha")
Eext = base\_extend(E, Fext)P = \text{randX}only(Eext)
pˆd * P
```
Sol. 3 (Sage)

```
E = EllipticCurve(\ldots)Fext = FiniteField(p**d, "alpha")
Text = E.\text{base}\text{.extend}(\text{Fext})P = Eext.random_element()
C = p**dC \ast P
```
KOD KARD KED KED E YORA

Timing results

KORK ERKER ADE YOUR

Further possible development

Around the previous algorithms:

- Call (system) PARI to compute the cardinality of curves over finite fields
- \bullet Have access to FLINT's root finding algorithms modulo p
- Have a decent system to handle field extensions
- Have *p*-adic numbers to compute isogenies in small characteristic?
- Connections with Hecke to be able to compute in endomorphism rings?

 00000

KORK ERKER ADE YOUR

Further possible development

This module may also become useful to people learning about elliptic curves and elliptic curve cryptography:

- Implement other models for curves
- Add pairings
- \bullet . . .

[Motivation](#page-2-0)

- ² [An example in isogeny-based cryptography](#page-7-0) **•** [Background](#page-8-0)
	- [Computations](#page-13-0)
- [The EllipticCurves module](#page-28-0)
	- [Contents](#page-29-0)
	- **•** [Further development](#page-35-0)

KOD KARD KED KED E YORA

Conclusion

• We implemented Couveigne's proposal, but the heavy computations needed makes it uncompetitive in practive when compared with other cryptosystems.

000000

KOD KARD KED KED E YORA

- We implemented Couveigne's proposal, but the heavy computations needed makes it uncompetitive in practive when compared with other cryptosystems.
- In order to use Vélu's formulas, we have to look for adequate curves, and this requires lots of computational power.

000000

KORK STRATER STRAKER

- We implemented Couveigne's proposal, but the heavy computations needed makes it uncompetitive in practive when compared with other cryptosystems.
- In order to use Vélu's formulas, we have to look for adequate curves, and this requires lots of computational power.
- With the best curve we found so far, aiming at 128-bit security, we reduced the computing time from 880 to 360 seconds. Better curves would bring further improvement.

000000

KORK STRATER STRAKER

- We implemented Couveigne's proposal, but the heavy computations needed makes it uncompetitive in practive when compared with other cryptosystems.
- In order to use Vélu's formulas, we have to look for adequate curves, and this requires lots of computational power.
- With the best curve we found so far, aiming at 128-bit security, we reduced the computing time from 880 to 360 seconds. Better curves would bring further improvement.
- The EllipticCurves module is able to perform these computations.

イロト イ御 トイミト イミト ニミー りんぴ

Thank you!