-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_loader.py
127 lines (104 loc) · 4.84 KB
/
dataset_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
from pathlib import Path
import random
from PIL import Image
import matplotlib.pyplot as plt
import fiftyone as fo
import fiftyone.zoo as foz
import config as cfg
dataset = foz.load_zoo_dataset("coco-2017", split="train", max_samples=1000)
coco_images = [info for info in dataset]
class Entree:
def __init__(self, path_image:str, flipper:bool, augmentation:bool):
self.path_image = path_image
self.flipper = flipper
self.augmentation = augmentation
def rgb2ycbcr(self, x:np.array):
y = 16 + x[:,:,0] * 65.738 / 256 + 129.057 * x[:,:,1]/256 + 25.064 * x[:,:,2] / 256
cb = 128 - x[:,:,0] * 37.945 / 256 - 74.494 * x[:,:,1]/256 + 112.439 * x[:,:,2] / 256
cr = 128 + x[:,:,0] * 112.439 / 256 - 94.154 * x[:,:,1]/256 - 18.285 * x[:,:,2] / 256
img = np.stack([y, cb, cr], axis=-1)
return img
def charger_gazon(self):
no_texture = random.randint(0, 10)
img_texture = Image.open(f'textures/texture_{no_texture}.png')
img_texture = img_texture.resize((cfg.resized_image_width, cfg.resized_image_height))
img_texture = np.array(img_texture)[:,:,:-1]
if random.random() < 0.5:
img_texture = np.fliplr(img_texture)
if random.random() < 0.5:
img_texture = np.flipud(img_texture)
return img_texture
def ajouter_gazon(self, image):
gazon = self.charger_gazon()
gazon = self.rgb2ycbcr(gazon)
dist = np.absolute(np.full((cfg.resized_image_height, cfg.resized_image_width, 3), (84, 90, 83)) - image)
dist = np.sum(dist, -1)
image[np.where(dist < 20)] = gazon[np.where(dist < 20)]
return image
def ajouter_coco(self, image):
mask = image == [167, 137, 127] #couleur du background gris
mask = mask[...,0] + mask[...,1] + mask[...,2]
coco_image = random.choice(coco_images)
i = Image.open(coco_image.filepath)
i = i.resize((cfg.resized_image_width, cfg.resized_image_height))
i = np.array(i)
if len(i.shape) == 2:
i = np.stack((i,)*3, axis=-1)
i = self.rgb2ycbcr(i)
image[mask] = i[mask]
return image
def charger_image(self):
image = Image.open(self.path_image)
image = image.resize((cfg.resized_image_width, cfg.resized_image_height), Image.NEAREST)
image = np.array(image)
if self.augmentation:
image = self.ajouter_gazon(image)
image = self.ajouter_coco(image)
image = image + np.random.normal(scale=0.1)
image = image / 255.
if self.flipper:
image = np.fliplr(image)
return image * 2 - 1.0
def __repr__(self):
return '[Image] : ' + self.path_image + ', ' + str(self.flipper)
class PairGenerateur:
def __init__(self, entrees_simulation:list, entrees_robot:list, batch_size:int):
self.entrees_simulation = entrees_simulation
self.entrees_robot = entrees_robot
self.batch_size = batch_size
def __len__(self):
return len(self.entrees_simulation)
def nb_batches(self):
return int(len(self.entrees_simulation)/self.batch_size)
def generer_paires(self, depart=0):
for i in range(depart, self.nb_batches()):
j = i + self.batch_size if i + self.batch_size <= len(self.entrees_robot) else len(self.entrees_robot)
robot = self.entrees_robot[i:j]
simu = random.choices(self.entrees_simulation, k=self.batch_size)
batch = [[i.charger_image(), j.charger_image()] for i, j in zip(simu, robot)]
yield np.array(batch)
def lire_entrees(dossier:str, augmentation:bool = False, flipper:bool = True):
images = list(Path(dossier).glob('*/*'))
if flipper:
images = images * 2
entrees = []
for i, path_image in enumerate(images):
if flipper:
flip = True if i > len(images) / 2 else False
else:
flip = False
entrees.append(Entree(str(path_image), flip, augmentation))
return entrees
def split_dataset(entrees_simulation, entrees_robot, batch_size):
random.shuffle(entrees_simulation)
random.shuffle(entrees_robot)
train = PairGenerateur(entrees_simulation[:-batch_size*2], entrees_robot[:-batch_size*2], batch_size)
validation = PairGenerateur(entrees_simulation[-batch_size*2:-batch_size], entrees_robot[-batch_size*2:-batch_size], batch_size)
test = PairGenerateur(entrees_simulation[-batch_size:], entrees_robot[-batch_size:], batch_size)
return train, validation, test
def create_dataset(batch_size):
entrees_simulation = lire_entrees(cfg.dossier_brut_simulation, True, True)
entrees_robot = lire_entrees(cfg.dossier_brut_robot, False, False)
train, validation, test = split_dataset(entrees_simulation, entrees_robot, batch_size)
return train, validation, test