forked from noellelaw/cseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ovseg_swinB_vitL_bs32_ade20k.yaml
101 lines (101 loc) · 2.59 KB
/
ovseg_swinB_vitL_bs32_ade20k.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
MODEL:
META_ARCHITECTURE: "OVSeg"
BACKBONE:
FREEZE_AT: 0
NAME: "D2SwinTransformer"
SWIN:
EMBED_DIM: 128
DEPTHS: [2, 2, 18, 2]
NUM_HEADS: [4, 8, 16, 32]
WINDOW_SIZE: 12
APE: False
DROP_PATH_RATE: 0.3
PATCH_NORM: True
PRETRAIN_IMG_SIZE: 384
WEIGHTS: "/content/drive/MyDrive/ov-seg/ovseg_swinbase_vitL14_ft_mpt.pth"
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
SEM_SEG_HEAD:
NAME: "OpenVocabMaskFormerHead"
IN_FEATURES: ["res2", "res3", "res4", "res5"]
IGNORE_VALUE: -1
NUM_CLASSES: 150 # number of categories in training set
EMBEDDING_DIM: 768
EMBED_LAYERS: 2
COMMON_STRIDE: 4 # not used, hard-coded
LOSS_WEIGHT: 1.0
CONVS_DIM: 256
MASK_DIM: 256
NORM: "GN"
MASK_FORMER:
TRANSFORMER_IN_FEATURE: "res5"
DEEP_SUPERVISION: True
NO_OBJECT_WEIGHT: 0.1
DICE_WEIGHT: 1.0
MASK_WEIGHT: 20.0
HIDDEN_DIM: 256
NUM_OBJECT_QUERIES: 100
NHEADS: 8
DROPOUT: 0.1
DIM_FEEDFORWARD: 2048
ENC_LAYERS: 0
DEC_LAYERS: 6
PRE_NORM: False
CLIP_ADAPTER:
TEXT_TEMPLATES: "vild"
CLIP_MODEL_NAME: "ViT-L/14"
MASK_FILL: "mean"
MASK_EXPAND_RATIO: 1.0
MASK_THR: 0.4 # choose the foreground objects
MASK_MATTING: False # use soft background, default not used
MASK_PROMPT_DEPTH: 3
MASK_PROMPT_FWD: True # use mask prompt during forward
REGION_RESIZED: True # resize to the input of clip, e.g., 224
CLIP_ENSEMBLE: True # use ensemble of two classification branches
CLIP_ENSEMBLE_WEIGHT: 0.0
DATASETS:
TRAIN: ("ade20k_sem_seg_val",)
TEST: ("ade20k_sem_seg_val",)
SOLVER:
IMS_PER_BATCH: 1
BASE_LR: 0.00006
MAX_ITER: 120000
CHECKPOINT_PERIOD: 2000
WARMUP_FACTOR: 1e-6
WARMUP_ITERS: 1500
LR_SCHEDULER_NAME: "WarmupPolyLR"
WEIGHT_DECAY: 0.01
WEIGHT_DECAY_NORM: 0.0
WEIGHT_DECAY_EMBED: 0.0
BACKBONE_MULTIPLIER: 1.0
TEST_IMS_PER_BATCH: 1
CLIP_GRADIENTS:
ENABLED: False
CLIP_TYPE: "full_model"
CLIP_VALUE: 0.01
NORM_TYPE: 2.0
INPUT:
MIN_SIZE_TRAIN: !!python/object/apply:eval ["[int(x * 0.1 * 640) for x in range(5, 21)]"]
MIN_SIZE_TRAIN_SAMPLING: "choice"
MIN_SIZE_TEST: 640
MAX_SIZE_TRAIN: 2560
MAX_SIZE_TEST: 2560
CROP:
ENABLED: True
TYPE: "absolute"
SIZE: (640, 640)
SINGLE_CATEGORY_MAX_AREA: 1.0
COLOR_AUG_SSD: True
SIZE_DIVISIBILITY: 640 # used in dataset mapper
FORMAT: "RGB"
TEST:
EVAL_PERIOD: 5000
AUG:
ENABLED: False
MIN_SIZES: [256, 384, 512, 640, 768, 896]
MAX_SIZE: 3584
FLIP: True
DATALOADER:
FILTER_EMPTY_ANNOTATIONS: True
NUM_WORKERS: 4
VERSION: 2