-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_concat.py
213 lines (163 loc) · 7.55 KB
/
search_concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
""" Search cell
This is for search_begin_concat scanning.
TODO: Implement the double cell search method.
Basically introduce following:
Normal cell, reduce cell, and empty cell?
"""
import os
import torch
import torch.nn as nn
import numpy as np
from tensorboardX import SummaryWriter
from configs.config_concat import SearchConfig
import utils
from models_concat.search_cnn import SearchCNNController
from architect import Architect
config = SearchConfig()
device = torch.device("cuda")
# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text('config', config.as_markdown(), 0)
logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name)))
config.print_params(logger.info)
def main(config):
logger.info("Logger is set - training start")
# set default gpu device id
torch.cuda.set_device(config.gpus[0])
# set seed
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.benchmark = True
# get data with meta info
input_size, input_channels, n_classes, train_data = utils.get_data(
config, config.dataset, config.data_path, cutout_length=0, validation=False)
net_crit = nn.CrossEntropyLoss().to(device)
# This needs to be changed.
model = SearchCNNController(config, input_channels, config.init_channels, n_classes, config.layers,
net_crit, device_ids=config.gpus)
model = model.to(device)
# weights optimizer
w_optim = torch.optim.SGD(model.weights(), config.w_lr, momentum=config.w_momentum,
weight_decay=config.w_weight_decay)
# alphas optimizer
alpha_optim = torch.optim.Adam(model.alphas(), config.alpha_lr, betas=(0.5, 0.999),
weight_decay=config.alpha_weight_decay)
# split data to train/validation
n_train = len(train_data)
split = n_train // 2
indices = list(range(n_train))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[:split])
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[split:])
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
sampler=train_sampler,
num_workers=config.workers,
pin_memory=True)
valid_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
sampler=valid_sampler,
num_workers=config.workers,
pin_memory=True)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
w_optim, config.epochs, eta_min=config.w_lr_min)
architect = Architect(model, config.w_momentum, config.w_weight_decay)
# training loop
best_top1 = 0.
for epoch in range(config.epochs):
if epoch >= config.early_stopping:
break
lr_scheduler.step()
lr = lr_scheduler.get_lr()[0]
model.print_alphas(logger)
# training
train(train_loader, valid_loader, model, architect, w_optim, alpha_optim, lr, epoch, config)
# validation
cur_step = (epoch+1) * len(train_loader)
top1 = validate(valid_loader, model, epoch, cur_step, config)
# log
# genotype
genotype = model.genotype()
logger.info("genotype = {}".format(genotype))
# # genotype as a image
# plot_path = os.path.join(config.plot_path, "EP{:02d}".format(epoch+1))
# caption = "Epoch {}".format(epoch+1)
# plot(genotype.normal, plot_path + "-normal", caption)
# plot(genotype.reduce, plot_path + "-reduce", caption)
# save
if best_top1 < top1:
best_top1 = top1
best_genotype = genotype
is_best = True
else:
is_best = False
utils.save_checkpoint(model, config.path, is_best)
print("")
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
logger.info("Best Genotype = {}".format(best_genotype))
def train(train_loader, valid_loader, model, architect, w_optim, alpha_optim, lr, epoch, config):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
cur_step = epoch*len(train_loader)
writer.add_scalar('train/lr', lr, cur_step)
model.train()
for step, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_loader, valid_loader)):
trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True)
val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True)
N = trn_X.size(0)
# phase 2. updating the architecture parameter.
alpha_optim.zero_grad()
architect.unrolled_backward(trn_X, trn_y, val_X, val_y, lr, w_optim, config)
alpha_optim.step()
# phase 1. child network step (w)
w_optim.zero_grad()
logits = model(trn_X)
loss = model.criterion(logits, trn_y)
loss.backward()
# gradient clipping
nn.utils.clip_grad_norm_(model.weights(), config.w_grad_clip)
w_optim.step()
prec1, prec5 = utils.accuracy(logits, trn_y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(train_loader)-1:
logger.info(
"Train: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(train_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
cur_step += 1
logger.info("Train: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
def validate(valid_loader, model, epoch, cur_step, config):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
model.eval()
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
logits = model(X)
loss = model.criterion(logits, y)
prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(valid_loader)-1:
logger.info(
"Valid: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(valid_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
logger.info("Valid: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
return top1.avg
if __name__ == "__main__":
main(config)