Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expected performance on p106-100 6gb #21

Open
MatPoliquin opened this issue May 27, 2020 · 0 comments
Open

Expected performance on p106-100 6gb #21

MatPoliquin opened this issue May 27, 2020 · 0 comments

Comments

@MatPoliquin
Copy link

MatPoliquin commented May 27, 2020

Anyone else tried on a p106-100 6gb (mining version of a GTX 1060)?
I get around 2800 fps with 100% GPU Utilization

cmd line:
python3 vtrace_main.py --env-name PongNoFrameskip-v4 --normalize --use-cuda-env --num-ales 1200 --num-steps 20 --num-steps-per-update 1 --num-minibatches 20 --t-max 8000000 --evaluation-interval 200000

log:
Rank 0
P106-100 : 1708.500 Mhz (Ordinal 0)
10 SMs enabled. Compute Capability sm_61
FreeMem: 5,321MB TotalMem: 6,080MB 64-bit pointers.
Mem Clock: 4004.000 Mhz x 192 bits (192.2 GB/s)
ECC Disabled

Selected optimization level O0: Pure FP32 training.

Defaults for this optimization level are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Processing user overrides (additional kwargs that are not None)...
After processing overrides, optimization options are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'",)
0%| | 0/6667 [00:00<?, ?it/s][CuLE CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/763.0/759.7/759.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0
[OpAI CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/760.0/758.3/758.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0
3%|█▎ | 167/6667 [01:27<46:13, 2.34it/s, 2797.63f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7545/0.0216/-0.0093][CuLE CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 781.0/950.0/859.9/841.0 --- (reward) min/max/mean/median: -21.0/-20.0/-20.6/-21.0
[OpAI CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 777.0/987.0/904.5/898.0 --- (reward) min/max/mean/median: -21.0/-19.0/-20.4/-21.0
5%|██▌ | 334/6667 [03:00<45:21, 2.33it/s, 2798.67f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7062/0.0304/ 0.0559][CuLE CPU] [training time: 00:02:21.250146 s] (length) min/max/mean/median: 816.0/1106.0/930.6/903.0 --- (reward) min/max/mean/median: -21.0/-18.0/-20.3/-21.0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant