We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Anyone else tried on a p106-100 6gb (mining version of a GTX 1060)? I get around 2800 fps with 100% GPU Utilization
cmd line: python3 vtrace_main.py --env-name PongNoFrameskip-v4 --normalize --use-cuda-env --num-ales 1200 --num-steps 20 --num-steps-per-update 1 --num-minibatches 20 --t-max 8000000 --evaluation-interval 200000
log: Rank 0 P106-100 : 1708.500 Mhz (Ordinal 0) 10 SMs enabled. Compute Capability sm_61 FreeMem: 5,321MB TotalMem: 6,080MB 64-bit pointers. Mem Clock: 4004.000 Mhz x 192 bits (192.2 GB/s) ECC Disabled
Selected optimization level O0: Pure FP32 training.
Defaults for this optimization level are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O0 cast_model_type : torch.float32 patch_torch_functions : False keep_batchnorm_fp32 : None master_weights : False loss_scale : 1.0 Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'",) 0%| | 0/6667 [00:00<?, ?it/s][CuLE CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/763.0/759.7/759.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0 [OpAI CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/760.0/758.3/758.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0 3%|█▎ | 167/6667 [01:27<46:13, 2.34it/s, 2797.63f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7545/0.0216/-0.0093][CuLE CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 781.0/950.0/859.9/841.0 --- (reward) min/max/mean/median: -21.0/-20.0/-20.6/-21.0 [OpAI CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 777.0/987.0/904.5/898.0 --- (reward) min/max/mean/median: -21.0/-19.0/-20.4/-21.0 5%|██▌ | 334/6667 [03:00<45:21, 2.33it/s, 2798.67f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7062/0.0304/ 0.0559][CuLE CPU] [training time: 00:02:21.250146 s] (length) min/max/mean/median: 816.0/1106.0/930.6/903.0 --- (reward) min/max/mean/median: -21.0/-18.0/-20.3/-21.0
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Anyone else tried on a p106-100 6gb (mining version of a GTX 1060)?
I get around 2800 fps with 100% GPU Utilization
cmd line:
python3 vtrace_main.py --env-name PongNoFrameskip-v4 --normalize --use-cuda-env --num-ales 1200 --num-steps 20 --num-steps-per-update 1 --num-minibatches 20 --t-max 8000000 --evaluation-interval 200000
log:
Rank 0
P106-100 : 1708.500 Mhz (Ordinal 0)
10 SMs enabled. Compute Capability sm_61
FreeMem: 5,321MB TotalMem: 6,080MB 64-bit pointers.
Mem Clock: 4004.000 Mhz x 192 bits (192.2 GB/s)
ECC Disabled
Selected optimization level O0: Pure FP32 training.
Defaults for this optimization level are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Processing user overrides (additional kwargs that are not None)...
After processing overrides, optimization options are:
enabled : True
opt_level : O0
cast_model_type : torch.float32
patch_torch_functions : False
keep_batchnorm_fp32 : None
master_weights : False
loss_scale : 1.0
Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'",)
0%| | 0/6667 [00:00<?, ?it/s][CuLE CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/763.0/759.7/759.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0
[OpAI CPU] [training time: 00:00:00.000000 s] (length) min/max/mean/median: 757.0/760.0/758.3/758.0 --- (reward) min/max/mean/median: -21.0/-21.0/-21.0/-21.0
3%|█▎ | 167/6667 [01:27<46:13, 2.34it/s, 2797.63f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7545/0.0216/-0.0093][CuLE CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 781.0/950.0/859.9/841.0 --- (reward) min/max/mean/median: -21.0/-20.0/-20.6/-21.0
[OpAI CPU] [training time: 00:01:09.831456 s] (length) min/max/mean/median: 777.0/987.0/904.5/898.0 --- (reward) min/max/mean/median: -21.0/-19.0/-20.4/-21.0
5%|██▌ | 334/6667 [03:00<45:21, 2.33it/s, 2798.67f/s, min/max/mean/median reward: 0.0/ 0.0/ 0.0/ 0.0, entropy/value/policy: 1.7062/0.0304/ 0.0559][CuLE CPU] [training time: 00:02:21.250146 s] (length) min/max/mean/median: 816.0/1106.0/930.6/903.0 --- (reward) min/max/mean/median: -21.0/-18.0/-20.3/-21.0
The text was updated successfully, but these errors were encountered: