-
Notifications
You must be signed in to change notification settings - Fork 220
/
Copy pathserver.py
292 lines (238 loc) · 10.2 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import base64
import json
import os
import re
import time
import uuid
from contextlib import asynccontextmanager
from io import BytesIO
from threading import Thread
from typing import List, Literal, Optional, Union, get_args
import requests
import torch
import uvicorn
from fastapi import FastAPI
from fastapi.responses import JSONResponse, StreamingResponse
from PIL import Image as PILImage
from PIL.Image import Image
from pydantic import BaseModel
from transformers.generation.streamers import TextIteratorStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN
from llava.conversation import SeparatorStyle, conv_templates
from llava.mm_utils import KeywordsStoppingCriteria, get_model_name_from_path, process_images, tokenizer_image_token
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
class TextContent(BaseModel):
type: Literal["text"]
text: str
class ImageURL(BaseModel):
url: str
class ImageContent(BaseModel):
type: Literal["image_url"]
image_url: ImageURL
IMAGE_CONTENT_BASE64_REGEX = re.compile(r"^data:image/(png|jpe?g);base64,(.*)$")
class ChatMessage(BaseModel):
role: Literal["user", "assistant"]
content: Union[str, List[Union[TextContent, ImageContent]]]
class ChatCompletionRequest(BaseModel):
model: Literal[
"VILA1.5-3B",
"VILA1.5-3B-AWQ",
"VILA1.5-3B-S2",
"VILA1.5-3B-S2-AWQ",
"Llama-3-VILA1.5-8B",
"Llama-3-VILA1.5-8B-AWQ",
"VILA1.5-13B",
"VILA1.5-13B-AWQ",
"VILA1.5-40B",
"VILA1.5-40B-AWQ",
]
messages: List[ChatMessage]
max_tokens: Optional[int] = 512
top_p: Optional[float] = 0.9
temperature: Optional[float] = 0.2
stream: Optional[bool] = False
use_cache: Optional[bool] = True
num_beams: Optional[int] = 1
model = None
model_name = None
tokenizer = None
image_processor = None
context_len = None
def load_image(image_url: str) -> Image:
if image_url.startswith("http") or image_url.startswith("https"):
response = requests.get(image_url)
image = PILImage.open(BytesIO(response.content)).convert("RGB")
else:
match_results = IMAGE_CONTENT_BASE64_REGEX.match(image_url)
if match_results is None:
raise ValueError(f"Invalid image url: {image_url}")
image_base64 = match_results.groups()[1]
image = PILImage.open(BytesIO(base64.b64decode(image_base64))).convert("RGB")
return image
def get_literal_values(cls, field_name: str):
field_type = cls.__annotations__.get(field_name)
if field_type is None:
raise ValueError(f"{field_name} is not a valid field name")
if hasattr(field_type, "__origin__") and field_type.__origin__ is Literal:
return get_args(field_type)
raise ValueError(f"{field_name} is not a Literal type")
VILA_MODELS = get_literal_values(ChatCompletionRequest, "model")
def normalize_image_tags(qs: str) -> str:
if DEFAULT_IMAGE_TOKEN not in qs:
print("No image was found in input messages. Continuing with text only prompt.")
return qs
@asynccontextmanager
async def lifespan(app: FastAPI):
global model, model_name, tokenizer, image_processor, context_len
disable_torch_init()
model_path = app.args.model_path
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_name, None)
print(f"Model {model_name} loaded successfully. Context length: {context_len}")
yield
app = FastAPI(lifespan=lifespan)
# Load model upon startup
@app.post("/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
try:
global model, tokenizer, image_processor, context_len
if request.model != model_name:
raise ValueError(
f"The endpoint is configured to use the model {model_name}, "
f"but the request model is {request.model}"
)
max_tokens = request.max_tokens
temperature = request.temperature
top_p = request.top_p
use_cache = request.use_cache
num_beams = request.num_beams
messages = request.messages
conv_mode = app.args.conv_mode
images = []
conv = conv_templates[conv_mode].copy()
user_role = conv.roles[0]
assistant_role = conv.roles[1]
for message in messages:
if message.role == "user":
prompt = ""
if isinstance(message.content, str):
prompt += message.content
if isinstance(message.content, list):
for content in message.content:
if content.type == "text":
prompt += content.text
if content.type == "image_url":
image = load_image(content.image_url.url)
images.append(image)
prompt += DEFAULT_IMAGE_TOKEN
normalized_prompt = normalize_image_tags(prompt)
conv.append_message(user_role, normalized_prompt)
if message.role == "assistant":
prompt = message.content
conv.append_message(assistant_role, prompt)
# add a last "assistant" message to complete the prompt
if conv.sep_style == SeparatorStyle.LLAMA_3:
conv.append_message(assistant_role, "")
prompt_text = conv.get_prompt()
print("Prompt input: ", prompt_text)
# support generation with text only inputs
if len(images) == 0:
images_input = None
else:
images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16)
images_input = [images_tensor]
input_ids = tokenizer_image_token(prompt_text, tokenizer, return_tensors="pt").unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
if request.stream:
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, timeout=20.0)
thread = Thread(
target=model.generate,
kwargs=dict(
input_ids=input_ids,
images=images_input,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_tokens,
streamer=streamer,
use_cache=use_cache,
stopping_criteria=[stopping_criteria],
),
)
thread.start()
def chunk_generator():
prepend_space = False
should_stop = False
chunk_id = 0
for new_text in streamer:
if new_text == " ":
prepend_space = True
continue
if new_text.endswith(stop_str):
new_text = new_text[: -len(stop_str)].strip()
prepend_space = False
should_stop = True
elif prepend_space:
new_text = " " + new_text
prepend_space = False
if len(new_text):
chunk = {
"id": chunk_id,
"object": "chat.completion.chunk",
"created": time.time(),
"model": request.model,
"choices": [{"delta": {"content": new_text}}],
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(chunk_generator())
else:
output_ids = model.generate(
input_ids,
images=images_input,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_tokens,
use_cache=use_cache,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
print("\nAssistant: ", outputs)
resp_content = [TextContent(type="text", text=outputs)]
return {
"id": uuid.uuid4().hex,
"object": "chat.completion",
"created": time.time(),
"model": request.model,
"choices": [{"message": ChatMessage(role="assistant", content=resp_content)}],
}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)},
)
if __name__ == "__main__":
host = os.getenv("VILA_HOST", "0.0.0.0")
port = os.getenv("VILA_PORT", 8000)
model_path = os.getenv("VILA_MODEL_PATH", "Efficient-Large-Model/VILA1.5-3B")
conv_mode = os.getenv("VILA_CONV_MODE", "vicuna_v1")
workers = os.getenv("VILA_WORKERS", 1)
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default=host)
parser.add_argument("--port", type=int, default=port)
parser.add_argument("--model-path", type=str, default=model_path)
parser.add_argument("--conv-mode", type=str, default=conv_mode)
parser.add_argument("--workers", type=int, default=workers)
app.args = parser.parse_args()
uvicorn.run(app, host=app.args.host, port=app.args.port, workers=app.args.workers)