We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
cuda 10.1 torch 1.5.1 python 3.7
python main.py --inference --model FlowNet2 --save_flow --save ./output --inference_dataset ImagesFromFolder --inference_dataset_root ./data/frames_seq/0_292_0_020501779/0 --resume ./models/FlowNet2_checkpoint.pth.tar Parsing Arguments [0.003s] batch_size: 8 [0.003s] crop_size: [256, 256] [0.003s] fp16: False [0.003s] fp16_scale: 1024.0 [0.003s] gradient_clip: None [0.003s] inference: True [0.004s] inference_batch_size: 1 [0.004s] inference_dataset: ImagesFromFolder [0.004s] inference_dataset_iext: jpg [0.004s] inference_dataset_replicates: 1 [0.004s] inference_dataset_root: ./data/frames_seq/0_292_0_020501779/0 [0.004s] inference_n_batches: -1 [0.004s] inference_size: [-1, -1] [0.004s] inference_visualize: False [0.004s] log_frequency: 1 [0.004s] loss: L1Loss [0.004s] model: FlowNet2 [0.004s] model_batchNorm: False [0.004s] model_div_flow: 20.0 [0.004s] name: run [0.004s] no_cuda: False [0.004s] number_gpus: 2 [0.004s] number_workers: 8 [0.004s] optimizer: Adam [0.004s] optimizer_amsgrad: False [0.004s] optimizer_betas: (0.9, 0.999) [0.004s] optimizer_eps: 1e-08 [0.004s] optimizer_lr: 0.001 [0.004s] optimizer_weight_decay: 0 [0.004s] render_validation: False [0.004s] resume: ./models/FlowNet2_checkpoint.pth.tar [0.004s] rgb_max: 255.0 [0.004s] save: ./output [0.004s] save_flow: True [0.004s] schedule_lr_fraction: 10 [0.004s] schedule_lr_frequency: 0 [0.004s] seed: 1 [0.004s] skip_training: False [0.004s] skip_validation: False [0.004s] start_epoch: 1 [0.004s] total_epochs: 10000 [0.004s] train_n_batches: -1 [0.004s] training_dataset: MpiSintelFinal [0.004s] training_dataset_replicates: 1 [0.004s] training_dataset_root: ./MPI-Sintel/flow/training [0.004s] validation_dataset: MpiSintelClean [0.004s] validation_dataset_replicates: 1 [0.004s] validation_dataset_root: ./MPI-Sintel/flow/training [0.004s] validation_frequency: 5 [0.004s] validation_n_batches: -1 [0.006s] Operation finished
Source Code Current Git Hash: b'2e9e010c98931bc7cef3eb063b195f1e0ab470ba'
Initializing Datasets [0.004s] Inference Dataset: ImagesFromFolder [0.009s] Inference Input: [3, 2, 320, 576] [0.041s] Inference Targets: [3, 2, 320, 576] [0.041s] Operation finished
Building FlowNet2 model [1.342s] Effective Batch Size: 16 [1.343s] Number of parameters: 162518834 [1.343s] Initializing CUDA Segmentation fault
The text was updated successfully, but these errors were encountered:
No branches or pull requests
cuda 10.1
torch 1.5.1
python 3.7
python main.py --inference --model FlowNet2 --save_flow --save ./output --inference_dataset ImagesFromFolder --inference_dataset_root ./data/frames_seq/0_292_0_020501779/0 --resume ./models/FlowNet2_checkpoint.pth.tar
Parsing Arguments
[0.003s] batch_size: 8
[0.003s] crop_size: [256, 256]
[0.003s] fp16: False
[0.003s] fp16_scale: 1024.0
[0.003s] gradient_clip: None
[0.003s] inference: True
[0.004s] inference_batch_size: 1
[0.004s] inference_dataset: ImagesFromFolder
[0.004s] inference_dataset_iext: jpg
[0.004s] inference_dataset_replicates: 1
[0.004s] inference_dataset_root: ./data/frames_seq/0_292_0_020501779/0
[0.004s] inference_n_batches: -1
[0.004s] inference_size: [-1, -1]
[0.004s] inference_visualize: False
[0.004s] log_frequency: 1
[0.004s] loss: L1Loss
[0.004s] model: FlowNet2
[0.004s] model_batchNorm: False
[0.004s] model_div_flow: 20.0
[0.004s] name: run
[0.004s] no_cuda: False
[0.004s] number_gpus: 2
[0.004s] number_workers: 8
[0.004s] optimizer: Adam
[0.004s] optimizer_amsgrad: False
[0.004s] optimizer_betas: (0.9, 0.999)
[0.004s] optimizer_eps: 1e-08
[0.004s] optimizer_lr: 0.001
[0.004s] optimizer_weight_decay: 0
[0.004s] render_validation: False
[0.004s] resume: ./models/FlowNet2_checkpoint.pth.tar
[0.004s] rgb_max: 255.0
[0.004s] save: ./output
[0.004s] save_flow: True
[0.004s] schedule_lr_fraction: 10
[0.004s] schedule_lr_frequency: 0
[0.004s] seed: 1
[0.004s] skip_training: False
[0.004s] skip_validation: False
[0.004s] start_epoch: 1
[0.004s] total_epochs: 10000
[0.004s] train_n_batches: -1
[0.004s] training_dataset: MpiSintelFinal
[0.004s] training_dataset_replicates: 1
[0.004s] training_dataset_root: ./MPI-Sintel/flow/training
[0.004s] validation_dataset: MpiSintelClean
[0.004s] validation_dataset_replicates: 1
[0.004s] validation_dataset_root: ./MPI-Sintel/flow/training
[0.004s] validation_frequency: 5
[0.004s] validation_n_batches: -1
[0.006s] Operation finished
Source Code
Current Git Hash: b'2e9e010c98931bc7cef3eb063b195f1e0ab470ba'
Initializing Datasets
[0.004s] Inference Dataset: ImagesFromFolder
[0.009s] Inference Input: [3, 2, 320, 576]
[0.041s] Inference Targets: [3, 2, 320, 576]
[0.041s] Operation finished
Building FlowNet2 model
[1.342s] Effective Batch Size: 16
[1.343s] Number of parameters: 162518834
[1.343s] Initializing CUDA
Segmentation fault
The text was updated successfully, but these errors were encountered: