-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathdecoderMaskedMultiheadAttentionTemplate.h
2809 lines (2421 loc) · 97.7 KB
/
decoderMaskedMultiheadAttentionTemplate.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention.h"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttentionUtils.h"
#include "tensorrt_llm/kernels/gptKernels.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include <assert.h>
#include <float.h>
#include <type_traits>
// Multi-block mmha kernel can only be selected when CUDA >= 11.7
#if (CUDART_VERSION >= 11070)
#define ENABLE_MULTI_BLOCK_OPTION
#endif
#ifdef ENABLE_MULTI_BLOCK_OPTION
#include <cub/block/block_reduce.cuh>
#include <cuda/atomic>
#include <cuda/std/bit>
#endif // ENABLE_MULTI_BLOCK_OPTION
namespace tensorrt_llm
{
namespace kernels
{
// Use HMMA to compute with FP16/BF16 inputs and FP32 accumulators.
// #define MMHA_USE_HMMA
// Pre-scale Q or P to reduce number of instructions for dequantizing KV cache.
// If you notice a decrease in accuracy when the fp8 kv cache is enabled,
// consider disabling the two flags.
#ifdef ENABLE_FP8
// Apply the FP8 scaling to Q instead of K.
#define MMHA_FP8_SCALE_Q_INSTEAD_OF_K
// Apply the FP8 scaling to P instead of V.
#define MMHA_FP8_SCALE_P_INSTEAD_OF_V
#endif // !defined ENABLE_FP8
// Below are knobs to extend FP32 accumulation for higher FP16 accuracy
// Does not seem to affect the accuracy that much
#define MMHA_USE_FP32_ACCUM_FOR_FMA
// Seems to slightly improve the accuracy
#define MMHA_USE_FP32_ACCUM_FOR_OUT
#if 0 && defined(MMHA_USE_FP32_ACCUM_FOR_OUT)
// Does not seem to improve the accuracy
//#define MMHA_USE_FP32_ACCUM_FOR_LOGITS
#endif
namespace mmha
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// We use the following terminology to describe the different dimensions.
//
// B: Batch size (number of sequences),
// L: Sequence length,
// D: Hidden dimension,
// H: Number of heads,
// Dh: Hidden dimension per head - Dh = D / H.
//
// The different kernels assign a threadblock for B x H pair. The grid has size (1, B, H). We use
// 256 threads per block to maximum occupancy and performance.
//
// Each threadblock loads Dh values from Q and its associated bias. The kernels run a loop to
// compute Q * K^T where K is loaded from a cache buffer -- except for the current timestep. The
// cache buffer helps with memory accesses and contains keys with bias.
//
// The layout of the cache buffer for the keys/values is [B, H, L, Dh]
// where the fastest moving dimension (contiguous data) is the rightmost one.
// Contiguous threads will read one hidden_dimension per LDG unless we need more than 32 threads.
//
// The different kernels use 1 ~ 32 threads per key (THREADS_PER_KEY). The size of the LDGs
// is always 16bytes (8 bytes for 8bit cache). Each thread sums Dh / THREADS_PER_KEY elements. At
// the end of each iteration of the Q * K^T loop, we perform a reduction between lanes using an
// HMMA instruction (Tensor Core). Each Q * K^T value is stored in shared memory in FP32.
//
// After that loop, a parallel softmax is computed across the different Q * K^T values stored in
// shared memory.
//
// The kernel ends with a loop over the values in V. We use THREADS_PER_VALUE to control how many
// timesteps are computed by loop iteration. As with the keys, the values are read from a cache
// except for the current timestep. The layout of the cache buffer for the values is same as the key,
// which is [B, H, L, Dh].
//
// Note that we have remapped key layout to make sure it shares the same pattern as value [B, H, L, Dh].
// It helps coalescing memory access, and reducing register pressure.
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int Dh_MAX>
struct Qk_vec_m_
{
};
template <>
struct Qk_vec_m_<float, 32>
{
using Type = float;
};
template <>
struct Qk_vec_m_<float, 64>
{
using Type = float2;
};
template <>
struct Qk_vec_m_<float, 128>
{
using Type = float4;
};
template <>
struct Qk_vec_m_<float, 256>
{
using Type = float4;
};
template <>
struct Qk_vec_m_<uint16_t, 32>
{
using Type = uint32_t;
};
template <>
struct Qk_vec_m_<uint16_t, 64>
{
using Type = uint32_t;
};
template <>
struct Qk_vec_m_<uint16_t, 128>
{
using Type = uint2;
};
template <>
struct Qk_vec_m_<uint16_t, 256>
{
using Type = uint4;
};
#ifdef ENABLE_BF16
template <>
struct Qk_vec_m_<__nv_bfloat16, 32>
{
using Type = __nv_bfloat162;
};
template <>
struct Qk_vec_m_<__nv_bfloat16, 64>
{
using Type = __nv_bfloat162;
};
template <>
struct Qk_vec_m_<__nv_bfloat16, 128>
{
using Type = bf16_4_t;
};
template <>
struct Qk_vec_m_<__nv_bfloat16, 256>
{
using Type = bf16_8_t;
};
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
template <>
struct Qk_vec_m_<__nv_fp8_e4m3, 32>
{
using Type = fp8_4_t;
};
template <>
struct Qk_vec_m_<__nv_fp8_e4m3, 64>
{
using Type = fp8_4_t;
};
template <>
struct Qk_vec_m_<__nv_fp8_e4m3, 128>
{
using Type = fp8_4_t;
};
template <>
struct Qk_vec_m_<__nv_fp8_e4m3, 256>
{
using Type = fp8_4_t;
};
#endif // ENABLE_FP8
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int Dh>
struct Qk_vec_k_
{
using Type = typename Qk_vec_m_<T, Dh>::Type;
};
#ifdef ENABLE_FP8
template <>
struct Qk_vec_k_<__nv_fp8_e4m3, 32>
{
using Type = float4;
};
template <>
struct Qk_vec_k_<__nv_fp8_e4m3, 64>
{
using Type = float4;
};
template <>
struct Qk_vec_k_<__nv_fp8_e4m3, 128>
{
using Type = float4;
};
template <>
struct Qk_vec_k_<__nv_fp8_e4m3, 256>
{
using Type = float4;
};
#endif // ENABLE_FP8
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int V_VEC_SIZE>
struct V_vec_m_
{
};
template <>
struct V_vec_m_<float, 1>
{
using Type = float;
};
template <>
struct V_vec_m_<float, 2>
{
using Type = float2;
};
template <>
struct V_vec_m_<float, 4>
{
using Type = float4;
};
template <>
struct V_vec_m_<float, 8>
{
using Type = Float8_;
};
template <>
struct V_vec_m_<uint16_t, 2>
{
using Type = uint32_t;
};
template <>
struct V_vec_m_<uint16_t, 4>
{
using Type = uint2;
};
template <>
struct V_vec_m_<uint16_t, 8>
{
using Type = uint4;
};
#ifdef ENABLE_BF16
template <>
struct V_vec_m_<__nv_bfloat16, 2>
{
using Type = __nv_bfloat162;
};
template <>
struct V_vec_m_<__nv_bfloat16, 4>
{
using Type = bf16_4_t;
};
template <>
struct V_vec_m_<__nv_bfloat16, 8>
{
using Type = bf16_8_t;
};
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int V_VEC_SIZE>
struct V_vec_k_
{
using Type = typename V_vec_m_<T, V_VEC_SIZE>::Type;
};
#ifdef ENABLE_FP8
template <>
struct V_vec_k_<__nv_fp8_e4m3, 4>
{
using Type = float4;
};
template <>
struct V_vec_k_<__nv_fp8_e4m3, 8>
{
using Type = float4;
};
template <>
struct V_vec_k_<__nv_fp8_e4m3, 16>
{
using Type = float4;
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// Reuse V_vec traits as key and value share the same layout.
template <typename T, int K_VEC_SIZE>
struct K_vec_m_
{
using Type = typename V_vec_m_<T, K_VEC_SIZE>::Type;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int K_VEC_SIZE>
struct K_vec_k_
{
using Type = typename K_vec_m_<T, K_VEC_SIZE>::Type;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef MMHA_USE_FP32_ACCUM_FOR_FMA
template <typename T>
struct Qk_vec_accum_fp32_
{
};
template <>
struct Qk_vec_accum_fp32_<float>
{
using Type = float;
};
template <>
struct Qk_vec_accum_fp32_<float2>
{
using Type = float2;
};
template <>
struct Qk_vec_accum_fp32_<float4>
{
using Type = float4;
};
// template<> struct Qk_vec_accum_fp32_<uint16_t> { using Type = float; };
template <>
struct Qk_vec_accum_fp32_<uint32_t>
{
using Type = float2;
};
template <>
struct Qk_vec_accum_fp32_<uint2>
{
using Type = Float4_;
};
template <>
struct Qk_vec_accum_fp32_<uint4>
{
using Type = Float8_;
};
template <>
struct Qk_vec_accum_fp32_<__nv_bfloat16>
{
using Type = float;
};
template <>
struct Qk_vec_accum_fp32_<__nv_bfloat162>
{
using Type = float2;
};
template <>
struct Qk_vec_accum_fp32_<bf16_4_t>
{
using Type = Float4_;
};
template <>
struct Qk_vec_accum_fp32_<bf16_8_t>
{
using Type = Float8_;
};
#ifdef ENABLE_FP8
// template<>
// struct Qk_vec_accum_fp32_<fp8_2_t> {
// using Type = float2;
// };
template <>
struct Qk_vec_accum_fp32_<fp8_4_t>
{
using Type = Float4_;
};
// template<>
// struct Qk_vec_accum_fp32_<fp8_8_t> {
// using Type = Float4_;
// };
#endif // ENABLE_FP8
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct K_vec_accum_fp32_
{
};
template <>
struct K_vec_accum_fp32_<float>
{
using Type = float;
};
template <>
struct K_vec_accum_fp32_<float2>
{
using Type = float2;
};
template <>
struct K_vec_accum_fp32_<float4>
{
using Type = float4;
};
template <>
struct K_vec_accum_fp32_<Float8_>
{
using Type = Float8_;
};
template <>
struct K_vec_accum_fp32_<uint32_t>
{
using Type = float2;
};
template <>
struct K_vec_accum_fp32_<uint2>
{
using Type = Float4_;
};
template <>
struct K_vec_accum_fp32_<uint4>
{
using Type = Float8_;
};
template <>
struct K_vec_accum_fp32_<__nv_bfloat16>
{
using Type = float;
};
template <>
struct K_vec_accum_fp32_<__nv_bfloat162>
{
using Type = float2;
};
template <>
struct K_vec_accum_fp32_<bf16_4_t>
{
using Type = Float4_;
};
template <>
struct K_vec_accum_fp32_<bf16_8_t>
{
using Type = Float8_;
};
#ifdef ENABLE_FP8
template <>
struct K_vec_accum_fp32_<__nv_fp8_e4m3>
{
using Type = float;
};
template <>
struct K_vec_accum_fp32_<fp8_2_t>
{
using Type = float2;
};
template <>
struct K_vec_accum_fp32_<fp8_4_t>
{
using Type = Float4_;
};
template <>
struct K_vec_accum_fp32_<fp8_8_t>
{
using Type = Float8_;
};
#endif // ENABLE_FP8
template <>
struct K_vec_accum_fp32_<int8_t>
{
using Type = float;
};
template <>
struct K_vec_accum_fp32_<int16_t>
{
using Type = float2;
};
template <>
struct K_vec_accum_fp32_<int32_t>
{
using Type = Float4_;
};
template <>
struct K_vec_accum_fp32_<int64_t>
{
using Type = Float8_;
};
#endif // MMHA_USE_FP32_ACCUM_FOR_FMA
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef MMHA_USE_FP32_ACCUM_FOR_OUT
template <typename T>
struct V_vec_accum_fp32_
{
};
template <>
struct V_vec_accum_fp32_<float>
{
using Type = float;
};
template <>
struct V_vec_accum_fp32_<float2>
{
using Type = float2;
};
template <>
struct V_vec_accum_fp32_<float4>
{
using Type = float4;
};
template <>
struct V_vec_accum_fp32_<uint32_t>
{
using Type = float2;
};
template <>
struct V_vec_accum_fp32_<uint2>
{
using Type = Float4_;
};
template <>
struct V_vec_accum_fp32_<uint4>
{
using Type = Float8_;
};
#ifdef ENABLE_BF16
template <>
struct V_vec_accum_fp32_<__nv_bfloat162>
{
using Type = float2;
};
template <>
struct V_vec_accum_fp32_<bf16_4_t>
{
using Type = Float4_;
};
template <>
struct V_vec_accum_fp32_<bf16_8_t>
{
using Type = Float8_;
};
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
// template<>
// struct V_vec_accum_fp32_<fp8_2_t> {
// using Type = float2;
// };
template <>
struct V_vec_accum_fp32_<fp8_4_t>
{
using Type = Float4_;
};
// template<>
// struct V_vec_accum_fp32_<fp8_8_t> {
// using Type = Float4_;
// };
#endif // ENABLE_FP8
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Tout, typename Tin>
__inline__ __device__ constexpr Tout vec_conversion(Tin const& x)
{
static_assert(std::is_same<Tout, Tin>::value, "Type mismatch");
return x;
}
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint4>(uint4 const& a)
{
Float8_ fc;
fc.x = half2_to_float2(a.x);
fc.y = half2_to_float2(a.y);
fc.z = half2_to_float2(a.z);
fc.w = half2_to_float2(a.w);
return fc;
}
#ifdef ENABLE_BF16
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, bf16_8_t>(bf16_8_t const& a)
{
Float8_ fc;
fc.x = bf1622float2(a.x);
fc.y = bf1622float2(a.y);
fc.z = bf1622float2(a.z);
fc.w = bf1622float2(a.w);
return fc;
}
#endif // ENABLE_BF16
#ifdef ENABLE_FP8
// fp8_t
template <>
__inline__ __device__ float vec_conversion<float, __nv_fp8_e4m3>(__nv_fp8_e4m3 const& a)
{
return float(a);
}
template <>
__inline__ __device__ __nv_fp8_e4m3 vec_conversion<__nv_fp8_e4m3, float>(float const& a)
{
return __nv_fp8_e4m3(a);
}
// fp8_2_t
template <>
__inline__ __device__ float2 vec_conversion<float2, fp8_2_t>(fp8_2_t const& a)
{
return float2(a);
}
template <>
__inline__ __device__ fp8_2_t vec_conversion<fp8_2_t, float2>(float2 const& a)
{
return fp8_2_t(a);
}
// fp8_4_t
template <>
__inline__ __device__ float4 vec_conversion<float4, fp8_4_t>(fp8_4_t const& a)
{
return float4(a);
}
template <>
__inline__ __device__ fp8_4_t vec_conversion<fp8_4_t, float4>(float4 const& a)
{
return fp8_4_t(a);
}
#endif // ENABLE_FP8
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int THREADS_PER_KEY, typename Q_vec, typename K_vec, int N>
inline __device__ float qk_dot_(const Q_vec (&q)[N], const K_vec (&k)[N])
{
#ifdef MMHA_USE_FP32_ACCUM_FOR_FMA
using K_vec_accum = typename K_vec_accum_fp32_<K_vec>::Type;
#else
using K_vec_accum = K_vec;
#endif
// Compute the parallel products for Q*K^T (treat vector lanes separately).
K_vec_accum qk_vec = mul<K_vec_accum, Q_vec, K_vec>(q[0], k[0]);
#pragma unroll
for (int ii = 1; ii < N; ++ii)
{
qk_vec = fma(q[ii], k[ii], qk_vec);
}
// Finalize the reduction across lanes.
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2)
{
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
}
return qk;
}
template <int THREADS_PER_KEY, typename Q_vec, typename K_vec, int N>
inline __device__ float qk_scale_dot_(const Q_vec (&q)[N], const K_vec (&k)[N], float const k_scale)
{
#ifdef MMHA_USE_FP32_ACCUM_FOR_FMA
using K_vec_accum = typename K_vec_accum_fp32_<K_vec>::Type;
#else
using K_vec_accum = K_vec;
#endif
// Compute the parallel products for Q*K^T (treat vector lanes separately).
K_vec_accum k_vec = mul<K_vec_accum, float, K_vec>(k_scale, k[0]);
K_vec_accum qk_vec = mul<K_vec_accum, Q_vec, K_vec_accum>(q[0], k_vec);
#pragma unroll
for (int ii = 1; ii < N; ++ii)
{
K_vec_accum k_vec = mul<K_vec_accum, float, K_vec>(k_scale, k[ii]);
qk_vec = fma(q[ii], k_vec, qk_vec);
}
// Finalize the reduction across lanes.
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2)
{
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
}
return qk;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T, int THREADS_PER_KEY>
struct Qk_dot
{
template <typename Q_vec, typename K_vec, int N>
static inline __device__ float dot(const Q_vec (&q)[N], const K_vec (&k)[N])
{
return qk_dot_<THREADS_PER_KEY>(q, k);
}
template <typename Q_vec, typename K_vec, int N>
static inline __device__ float scale_dot(const Q_vec (&q)[N], const K_vec (&k)[N], float const k_scale)
{
#ifdef MMHA_USE_HMMA
static_assert("HMMA doesn't support k scales");
#endif // MMHA_USE_HMMA
return qk_scale_dot_<THREADS_PER_KEY>(q, k, k_scale);
}
template <int WARP_SIZE = 32>
static inline __device__ bool is_leader(int const tidx)
{
return (tidx % THREADS_PER_KEY) == 0;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename K_vec>
inline __device__ void hmma_fp32(float4& c, K_vec const& a, K_vec b)
{
// Not supported.
assert(false);
}
template <>
inline __device__ void hmma_fp32(float4& c, uint32_t const& a, uint32_t b)
{
asm volatile(
"mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 \n"
" {%0, %1, %2, %3}, \n"
" {%4, %5}, \n"
" {%6}, \n"
" {%0, %1, %2, %3}; \n"
: "+f"(c.x), "+f"(c.y), "+f"(c.z), "+f"(c.w)
: "r"(a), "r"(a), "r"(b));
}
template <>
inline __device__ void hmma_fp32(float4& c, uint2 const& a, uint2 b)
{
hmma_fp32(c, a.x, b.x);
hmma_fp32(c, a.y, b.y);
}
template <>
inline __device__ void hmma_fp32(float4& c, uint4 const& a, uint4 b)
{
hmma_fp32(c, a.x, b.x);
hmma_fp32(c, a.y, b.y);
hmma_fp32(c, a.z, b.z);
hmma_fp32(c, a.w, b.w);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename K_vec, int THREADS_PER_KEY, int N>
inline __device__ float qk_hmma_dot_(const K_vec (&q)[N], const K_vec (&k)[N])
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
// Each quad computes its partial result.
float4 acc = make_float4(0.f, 0.f, 0.f, 0.f);
#pragma unroll
for (int ii = 0; ii < N; ++ii)
{
hmma_fp32(acc, q[ii], k[ii]);
}
// The position inside the warp.
int lane = threadIdx.x % 32;
// The position inside the HMMA instruction.
int row = lane / 4;
int col = lane % 4 * 2;
// The result. Only 1 thread in each quad owns a valid value.
//
// Row 0, it's lane 0 (col 0) in acc.x.
// Row 1, it's lane 4 (col 0) in acc.y.
// Row 2, it's lane 9 (col 2) in acc.x.
// Row 3, it's lane 13 (col 2) in acc.y.
// Row 4, it's lane 18 (col 4) in acc.x.
// Row 5, it's lane 22 (col 4) in acc.y.
// Row 6, it's lane 27 (col 6) in acc.x.
// Row 7, it's lane 31 (col 6) in acc.y.
//
float result = (row == col) ? acc.x : acc.y;
// Do the reduction inside the warp.
if (THREADS_PER_KEY > 4)
{
result += __shfl_xor_sync(unsigned(-1), result, 4);
}
if (THREADS_PER_KEY > 8)
{
result += __shfl_xor_sync(unsigned(-1), result, 9);
}
if (THREADS_PER_KEY > 16)
{
result += __shfl_xor_sync(unsigned(-1), result, 18);
}
// The warp leader has the correct value.
return result;
#else // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ < 750
return 0.f;
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int THREADS_PER_KEY>
struct Qk_dot<uint16_t, THREADS_PER_KEY>
{
template <typename Q_vec, typename K_vec, int N>
static inline __device__ float dot(const Q_vec (&q)[N], const K_vec (&k)[N])
{
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA)
return qk_hmma_dot_<K_vec, THREADS_PER_KEY, N>(q, k);
#else
return qk_dot_<THREADS_PER_KEY>(q, k);
#endif // defined MMHA_USE_HMMA
}
template <typename Q_vec, typename K_vec, int N>
static inline __device__ float scale_dot(const Q_vec (&q)[N], const K_vec (&k)[N], float const k_scale)
{
#ifdef MMHA_USE_HMMA
static_assert("HMMA doesn't support k scales");
#endif // MMHA_USE_HMMA
return qk_scale_dot_<THREADS_PER_KEY>(q, k, k_scale);
}
template <int WARP_SIZE = 32>
static inline __device__ bool is_leader(int const tidx)
{
// Use HMMA.FP32, leader threads are in the diagonal roughly (0, 4, 9, 13, 18, 22, 27, 31).
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA)
int leader = 0;
// The thread position inside the warp.
int lane = tidx % WARP_SIZE;
if (THREADS_PER_KEY == 4)
{
leader = int(lane / 8);
}
else
{
leader = int(lane / THREADS_PER_KEY) * int(THREADS_PER_KEY / 8);
}
#else
bool const leader = 0;
#endif // defined MMHA_USE_HMMA
return (tidx % THREADS_PER_KEY) == leader;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Tk, typename V_vec_accum, typename V_vec_m, bool INT8_KV_CACHE, bool FP8_KV_CACHE>
inline __device__ void Logit_value_fma(
V_vec_accum& out, Tk const* logits_smem, V_vec_m const& v_vec, float const v_scale, bool const is_mask)
{
#if defined(MMHA_USE_FP32_ACCUM_FOR_LOGITS)
float logit = is_mask ? 0.f : reinterpret_cast<float*>(logits_smem)[0];
if constexpr (INT8_KV_CACHE)
{
V_vec_accum v_vec_ = mul<V_vec_accum, float, V_vec_m>(v_scale, v_vec);
out = fma(logit, cast_to_float(v_vec_), out);
}
else if constexpr (FP8_KV_CACHE)
{
#ifdef MMHA_FP8_SCALE_P_INSTEAD_OF_V
out = fma(logit, cast_to_float(v_vec), out);
#else
V_vec_accum v_vec_ = mul<V_vec_accum, float, V_vec_m>(v_scale, v_vec);
out = fma(logit, cast_to_float(v_vec_), out);
#endif // MMHA_FP8_SCALE_P_INSTEAD_OF_V
}
else
{
out = fma(logit, cast_to_float(v_vec), out);
}
#else // MMHA_USE_FP32_ACCUM_FOR_LOGITS
Tk logit = is_mask ? Tk(0.f) : logits_smem[0];
if constexpr (INT8_KV_CACHE)
{
V_vec_accum v_vec_ = mul<V_vec_accum, float, V_vec_m>(v_scale, v_vec);
out = fma(logit, v_vec_, out);
}
else if constexpr (FP8_KV_CACHE)
{
#ifdef MMHA_FP8_SCALE_P_INSTEAD_OF_V
out = fma(logit, v_vec, out);
#else
V_vec_accum v_vec_ = mul<V_vec_accum, float, V_vec_m>(v_scale, v_vec);
out = fma(logit, v_vec_, out);
#endif // MMHA_FP8_SCALE_P_INSTEAD_OF_V
}
else
{
out = fma(logit, v_vec, out);
}
#endif // MMHA_USE_FP32_ACCUM_FOR_LOGITS
};