-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathtask_decontamination.py
105 lines (90 loc) · 2.58 KB
/
task_decontamination.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import nemo_curator as nc
from nemo_curator.datasets import DocumentDataset
from nemo_curator.tasks import (
ANLI,
CB,
PIQA,
RTE,
WSC,
ArcChallenge,
ArcEasy,
BoolQ,
Copa,
Drop,
MultiRC,
OpenBookQA,
Quac,
Race,
Record,
Squad,
TriviaQA,
WebQA,
WiC,
Winogrande,
)
from nemo_curator.utils.distributed_utils import get_client, read_data, write_to_disk
from nemo_curator.utils.file_utils import get_all_files_paths_under
from nemo_curator.utils.script_utils import ArgumentHelper
def load_dataset(input_data_dir):
files = list(get_all_files_paths_under(input_data_dir))
raw_data = read_data(files, file_type="jsonl", backend="pandas", add_filename=True)
dataset = DocumentDataset(raw_data)
return dataset
def main(args):
# Params
contaminated_dataset_path = "/path/to/input"
decontaminated_output_path = "/path/to/output"
downstream_tasks = [
Winogrande(),
Squad(),
TriviaQA(),
Quac(),
WebQA(),
Race(),
Drop(),
WiC(),
PIQA(),
ArcEasy(),
ArcChallenge(),
OpenBookQA(),
BoolQ(),
Copa(),
RTE(),
MultiRC(),
WSC(),
CB(),
ANLI(),
Record(),
]
# Prepare samples for the classifier
client = get_client(**ArgumentHelper.parse_client_args(args))
# Filter data
target_dataset = load_dataset(contaminated_dataset_path)
decontaminator = nc.TaskDecontamination(downstream_tasks)
decontaminated_dataset = decontaminator(target_dataset)
# Write filtered dataset
write_to_disk(
decontaminated_dataset.df, decontaminated_output_path, write_to_filename=True
)
def attach_args(
parser=argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
),
):
return ArgumentHelper(parser).add_distributed_args()
if __name__ == "__main__":
main(attach_args().parse_args())