-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathblend_and_shuffle.py
53 lines (41 loc) · 1.66 KB
/
blend_and_shuffle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import nemo_curator as nc
from nemo_curator.datasets import DocumentDataset
from nemo_curator.utils.distributed_utils import get_client
from nemo_curator.utils.script_utils import ArgumentHelper
def main(args):
# Params
dataset_paths = ["/path/to/first", "/path/to/second", "/path/to/third"]
dataset_weights = [5.0, 2.0, 1.0]
target_size = 1000
output_path = "/path/to/output"
# Set up Dask client
client = get_client(**ArgumentHelper.parse_client_args(args))
# Blend the datasets
datasets = [DocumentDataset.read_json(path) for path in dataset_paths]
blended_dataset = nc.blend_datasets(target_size, datasets, dataset_weights)
shuffle = nc.Shuffle(seed=42)
blended_dataset = shuffle(blended_dataset)
# Save the blend
blended_dataset.to_json(output_path)
def attach_args(
parser=argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
),
):
return ArgumentHelper(parser).add_distributed_args()
if __name__ == "__main__":
main(attach_args().parse_args())