-
Notifications
You must be signed in to change notification settings - Fork 431
/
vec_task.py
840 lines (689 loc) · 36.6 KB
/
vec_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import time
from datetime import datetime
from os.path import join
from typing import Dict, Any, Tuple, List, Set
import gym
from gym import spaces
from isaacgym import gymtorch, gymapi
from isaacgymenvs.utils.torch_jit_utils import to_torch
from isaacgymenvs.utils.dr_utils import get_property_setter_map, get_property_getter_map, \
get_default_setter_args, apply_random_samples, check_buckets, generate_random_samples
import torch
import numpy as np
import operator, random
from copy import deepcopy
from isaacgymenvs.utils.utils import nested_dict_get_attr, nested_dict_set_attr
from collections import deque
import sys
import abc
from abc import ABC
EXISTING_SIM = None
SCREEN_CAPTURE_RESOLUTION = (1027, 768)
def _create_sim_once(gym, *args, **kwargs):
global EXISTING_SIM
if EXISTING_SIM is not None:
return EXISTING_SIM
else:
EXISTING_SIM = gym.create_sim(*args, **kwargs)
return EXISTING_SIM
class Env(ABC):
def __init__(self, config: Dict[str, Any], rl_device: str, sim_device: str, graphics_device_id: int, headless: bool):
"""Initialise the env.
Args:
config: the configuration dictionary.
sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu'
graphics_device_id: the device ID to render with.
headless: Set to False to disable viewer rendering.
"""
split_device = sim_device.split(":")
self.device_type = split_device[0]
self.device_id = int(split_device[1]) if len(split_device) > 1 else 0
self.device = "cpu"
if config["sim"]["use_gpu_pipeline"]:
if self.device_type.lower() == "cuda" or self.device_type.lower() == "gpu":
self.device = "cuda" + ":" + str(self.device_id)
else:
print("GPU Pipeline can only be used with GPU simulation. Forcing CPU Pipeline.")
config["sim"]["use_gpu_pipeline"] = False
self.rl_device = rl_device
# Rendering
# if training in a headless mode
self.headless = headless
enable_camera_sensors = config["env"].get("enableCameraSensors", False)
self.graphics_device_id = graphics_device_id
if enable_camera_sensors == False and self.headless == True:
self.graphics_device_id = -1
self.num_environments = config["env"]["numEnvs"]
self.num_agents = config["env"].get("numAgents", 1) # used for multi-agent environments
self.num_observations = config["env"].get("numObservations", 0)
self.num_states = config["env"].get("numStates", 0)
self.obs_space = spaces.Box(np.ones(self.num_obs) * -np.Inf, np.ones(self.num_obs) * np.Inf)
self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf)
self.num_actions = config["env"]["numActions"]
self.control_freq_inv = config["env"].get("controlFrequencyInv", 1)
self.act_space = spaces.Box(np.ones(self.num_actions) * -1., np.ones(self.num_actions) * 1.)
self.clip_obs = config["env"].get("clipObservations", np.Inf)
self.clip_actions = config["env"].get("clipActions", np.Inf)
# Total number of training frames since the beginning of the experiment.
# We get this information from the learning algorithm rather than tracking ourselves.
# The learning algorithm tracks the total number of frames since the beginning of training and accounts for
# experiments restart/resumes. This means this number can be > 0 right after initialization if we resume the
# experiment.
self.total_train_env_frames: int = 0
# number of control steps
self.control_steps: int = 0
self.render_fps: int = config["env"].get("renderFPS", -1)
self.last_frame_time: float = 0.0
self.record_frames: bool = False
self.record_frames_dir = join("recorded_frames", datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
@abc.abstractmethod
def allocate_buffers(self):
"""Create torch buffers for observations, rewards, actions dones and any additional data."""
@abc.abstractmethod
def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]:
"""Step the physics of the environment.
Args:
actions: actions to apply
Returns:
Observations, rewards, resets, info
Observations are dict of observations (currently only one member called 'obs')
"""
@abc.abstractmethod
def reset(self)-> Dict[str, torch.Tensor]:
"""Reset the environment.
Returns:
Observation dictionary
"""
@abc.abstractmethod
def reset_idx(self, env_ids: torch.Tensor):
"""Reset environments having the provided indices.
Args:
env_ids: environments to reset
"""
@property
def observation_space(self) -> gym.Space:
"""Get the environment's observation space."""
return self.obs_space
@property
def action_space(self) -> gym.Space:
"""Get the environment's action space."""
return self.act_space
@property
def num_envs(self) -> int:
"""Get the number of environments."""
return self.num_environments
@property
def num_acts(self) -> int:
"""Get the number of actions in the environment."""
return self.num_actions
@property
def num_obs(self) -> int:
"""Get the number of observations in the environment."""
return self.num_observations
def set_train_info(self, env_frames, *args, **kwargs):
"""
Send the information in the direction algo->environment.
Most common use case: tell the environment how far along we are in the training process. This is useful
for implementing curriculums and things such as that.
"""
self.total_train_env_frames = env_frames
# print(f'env_frames updated to {self.total_train_env_frames}')
def get_env_state(self):
"""
Return serializable environment state to be saved to checkpoint.
Can be used for stateful training sessions, i.e. with adaptive curriculums.
"""
return None
def set_env_state(self, env_state):
pass
class VecTask(Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 24}
def __init__(self, config, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture: bool = False, force_render: bool = False):
"""Initialise the `VecTask`.
Args:
config: config dictionary for the environment.
sim_device: the device to simulate physics on. eg. 'cuda:0' or 'cpu'
graphics_device_id: the device ID to render with.
headless: Set to False to disable viewer rendering.
virtual_screen_capture: Set to True to allow the users get captured screen in RGB array via `env.render(mode='rgb_array')`.
force_render: Set to True to always force rendering in the steps (if the `control_freq_inv` is greater than 1 we suggest stting this arg to True)
"""
# super().__init__(config, rl_device, sim_device, graphics_device_id, headless, use_dict_obs)
super().__init__(config, rl_device, sim_device, graphics_device_id, headless)
self.virtual_screen_capture = virtual_screen_capture
self.virtual_display = None
if self.virtual_screen_capture:
from pyvirtualdisplay.smartdisplay import SmartDisplay
self.virtual_display = SmartDisplay(size=SCREEN_CAPTURE_RESOLUTION)
self.virtual_display.start()
self.force_render = force_render
self.sim_params = self.__parse_sim_params(self.cfg["physics_engine"], self.cfg["sim"])
if self.cfg["physics_engine"] == "physx":
self.physics_engine = gymapi.SIM_PHYSX
elif self.cfg["physics_engine"] == "flex":
self.physics_engine = gymapi.SIM_FLEX
else:
msg = f"Invalid physics engine backend: {self.cfg['physics_engine']}"
raise ValueError(msg)
self.dt: float = self.sim_params.dt
# optimization flags for pytorch JIT
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
self.gym = gymapi.acquire_gym()
self.first_randomization = True
self.original_props = {}
self.dr_randomizations = {}
self.actor_params_generator = None
self.extern_actor_params = {}
self.last_step = -1
self.last_rand_step = -1
for env_id in range(self.num_envs):
self.extern_actor_params[env_id] = None
# create envs, sim and viewer
self.sim_initialized = False
self.create_sim()
self.gym.prepare_sim(self.sim)
self.sim_initialized = True
self.set_viewer()
self.allocate_buffers()
self.obs_dict = {}
def set_viewer(self):
"""Create the viewer."""
# todo: read from config
self.enable_viewer_sync = True
self.viewer = None
# if running with a viewer, set up keyboard shortcuts and camera
if self.headless == False:
# subscribe to keyboard shortcuts
self.viewer = self.gym.create_viewer(
self.sim, gymapi.CameraProperties())
self.gym.subscribe_viewer_keyboard_event(
self.viewer, gymapi.KEY_ESCAPE, "QUIT")
self.gym.subscribe_viewer_keyboard_event(
self.viewer, gymapi.KEY_V, "toggle_viewer_sync")
self.gym.subscribe_viewer_keyboard_event(
self.viewer, gymapi.KEY_R, "record_frames")
# set the camera position based on up axis
sim_params = self.gym.get_sim_params(self.sim)
if sim_params.up_axis == gymapi.UP_AXIS_Z:
cam_pos = gymapi.Vec3(20.0, 25.0, 3.0)
cam_target = gymapi.Vec3(10.0, 15.0, 0.0)
else:
cam_pos = gymapi.Vec3(20.0, 3.0, 25.0)
cam_target = gymapi.Vec3(10.0, 0.0, 15.0)
self.gym.viewer_camera_look_at(
self.viewer, None, cam_pos, cam_target)
def allocate_buffers(self):
"""Allocate the observation, states, etc. buffers.
These are what is used to set observations and states in the environment classes which
inherit from this one, and are read in `step` and other related functions.
"""
# allocate buffers
self.obs_buf = torch.zeros(
(self.num_envs, self.num_obs), device=self.device, dtype=torch.float)
self.states_buf = torch.zeros(
(self.num_envs, self.num_states), device=self.device, dtype=torch.float)
self.rew_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.float)
self.reset_buf = torch.ones(
self.num_envs, device=self.device, dtype=torch.long)
self.timeout_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.progress_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.randomize_buf = torch.zeros(
self.num_envs, device=self.device, dtype=torch.long)
self.extras = {}
def create_sim(self, compute_device: int, graphics_device: int, physics_engine, sim_params: gymapi.SimParams):
"""Create an Isaac Gym sim object.
Args:
compute_device: ID of compute device to use.
graphics_device: ID of graphics device to use.
physics_engine: physics engine to use (`gymapi.SIM_PHYSX` or `gymapi.SIM_FLEX`)
sim_params: sim params to use.
Returns:
the Isaac Gym sim object.
"""
sim = _create_sim_once(self.gym, compute_device, graphics_device, physics_engine, sim_params)
if sim is None:
print("*** Failed to create sim")
quit()
return sim
def get_state(self):
"""Returns the state buffer of the environment (the privileged observations for asymmetric training)."""
return torch.clamp(self.states_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
@abc.abstractmethod
def pre_physics_step(self, actions: torch.Tensor):
"""Apply the actions to the environment (eg by setting torques, position targets).
Args:
actions: the actions to apply
"""
@abc.abstractmethod
def post_physics_step(self):
"""Compute reward and observations, reset any environments that require it."""
def step(self, actions: torch.Tensor) -> Tuple[Dict[str, torch.Tensor], torch.Tensor, torch.Tensor, Dict[str, Any]]:
"""Step the physics of the environment.
Args:
actions: actions to apply
Returns:
Observations, rewards, resets, info
Observations are dict of observations (currently only one member called 'obs')
"""
# randomize actions
if self.dr_randomizations.get('actions', None):
actions = self.dr_randomizations['actions']['noise_lambda'](actions)
action_tensor = torch.clamp(actions, -self.clip_actions, self.clip_actions)
# apply actions
self.pre_physics_step(action_tensor)
# step physics and render each frame
for i in range(self.control_freq_inv):
if self.force_render:
self.render()
self.gym.simulate(self.sim)
# to fix!
if self.device == 'cpu':
self.gym.fetch_results(self.sim, True)
# compute observations, rewards, resets, ...
self.post_physics_step()
self.control_steps += 1
# fill time out buffer: set to 1 if we reached the max episode length AND the reset buffer is 1. Timeout == 1 makes sense only if the reset buffer is 1.
self.timeout_buf = (self.progress_buf >= self.max_episode_length - 1) & (self.reset_buf != 0)
# randomize observations
if self.dr_randomizations.get('observations', None):
self.obs_buf = self.dr_randomizations['observations']['noise_lambda'](self.obs_buf)
self.extras["time_outs"] = self.timeout_buf.to(self.rl_device)
self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
# asymmetric actor-critic
if self.num_states > 0:
self.obs_dict["states"] = self.get_state()
return self.obs_dict, self.rew_buf.to(self.rl_device), self.reset_buf.to(self.rl_device), self.extras
def zero_actions(self) -> torch.Tensor:
"""Returns a buffer with zero actions.
Returns:
A buffer of zero torch actions
"""
actions = torch.zeros([self.num_envs, self.num_actions], dtype=torch.float32, device=self.rl_device)
return actions
def reset_idx(self, env_idx):
"""Reset environment with indces in env_idx.
Should be implemented in an environment class inherited from VecTask.
"""
pass
def reset(self):
"""Is called only once when environment starts to provide the first observations.
Doesn't calculate observations. Actual reset and observation calculation need to be implemented by user.
Returns:
Observation dictionary
"""
self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
# asymmetric actor-critic
if self.num_states > 0:
self.obs_dict["states"] = self.get_state()
return self.obs_dict
def reset_done(self):
"""Reset the environment.
Returns:
Observation dictionary, indices of environments being reset
"""
done_env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(done_env_ids) > 0:
self.reset_idx(done_env_ids)
self.obs_dict["obs"] = torch.clamp(self.obs_buf, -self.clip_obs, self.clip_obs).to(self.rl_device)
# asymmetric actor-critic
if self.num_states > 0:
self.obs_dict["states"] = self.get_state()
return self.obs_dict, done_env_ids
def render(self, mode="rgb_array"):
"""Draw the frame to the viewer, and check for keyboard events."""
if self.viewer:
# check for window closed
if self.gym.query_viewer_has_closed(self.viewer):
sys.exit()
# check for keyboard events
for evt in self.gym.query_viewer_action_events(self.viewer):
if evt.action == "QUIT" and evt.value > 0:
sys.exit()
elif evt.action == "toggle_viewer_sync" and evt.value > 0:
self.enable_viewer_sync = not self.enable_viewer_sync
elif evt.action == "record_frames" and evt.value > 0:
self.record_frames = not self.record_frames
# fetch results
if self.device != 'cpu':
self.gym.fetch_results(self.sim, True)
# step graphics
if self.enable_viewer_sync:
self.gym.step_graphics(self.sim)
self.gym.draw_viewer(self.viewer, self.sim, True)
# Wait for dt to elapse in real time.
# This synchronizes the physics simulation with the rendering rate.
self.gym.sync_frame_time(self.sim)
# it seems like in some cases sync_frame_time still results in higher-than-realtime framerate
# this code will slow down the rendering to real time
now = time.time()
delta = now - self.last_frame_time
if self.render_fps < 0:
# render at control frequency
render_dt = self.dt * self.control_freq_inv # render every control step
else:
render_dt = 1.0 / self.render_fps
if delta < render_dt:
time.sleep(render_dt - delta)
self.last_frame_time = time.time()
else:
self.gym.poll_viewer_events(self.viewer)
if self.record_frames:
if not os.path.isdir(self.record_frames_dir):
os.makedirs(self.record_frames_dir, exist_ok=True)
self.gym.write_viewer_image_to_file(self.viewer, join(self.record_frames_dir, f"frame_{self.control_steps}.png"))
if self.virtual_display and mode == "rgb_array":
img = self.virtual_display.grab()
return np.array(img)
def __parse_sim_params(self, physics_engine: str, config_sim: Dict[str, Any]) -> gymapi.SimParams:
"""Parse the config dictionary for physics stepping settings.
Args:
physics_engine: which physics engine to use. "physx" or "flex"
config_sim: dict of sim configuration parameters
Returns
IsaacGym SimParams object with updated settings.
"""
sim_params = gymapi.SimParams()
# check correct up-axis
if config_sim["up_axis"] not in ["z", "y"]:
msg = f"Invalid physics up-axis: {config_sim['up_axis']}"
print(msg)
raise ValueError(msg)
# assign general sim parameters
sim_params.dt = config_sim["dt"]
sim_params.num_client_threads = config_sim.get("num_client_threads", 0)
sim_params.use_gpu_pipeline = config_sim["use_gpu_pipeline"]
sim_params.substeps = config_sim.get("substeps", 2)
# assign up-axis
if config_sim["up_axis"] == "z":
sim_params.up_axis = gymapi.UP_AXIS_Z
else:
sim_params.up_axis = gymapi.UP_AXIS_Y
# assign gravity
sim_params.gravity = gymapi.Vec3(*config_sim["gravity"])
# configure physics parameters
if physics_engine == "physx":
# set the parameters
if "physx" in config_sim:
for opt in config_sim["physx"].keys():
if opt == "contact_collection":
setattr(sim_params.physx, opt, gymapi.ContactCollection(config_sim["physx"][opt]))
else:
setattr(sim_params.physx, opt, config_sim["physx"][opt])
else:
# set the parameters
if "flex" in config_sim:
for opt in config_sim["flex"].keys():
setattr(sim_params.flex, opt, config_sim["flex"][opt])
# return the configured params
return sim_params
"""
Domain Randomization methods
"""
def get_actor_params_info(self, dr_params: Dict[str, Any], env):
"""Generate a flat array of actor params, their names and ranges.
Returns:
The array
"""
if "actor_params" not in dr_params:
return None
params = []
names = []
lows = []
highs = []
param_getters_map = get_property_getter_map(self.gym)
for actor, actor_properties in dr_params["actor_params"].items():
handle = self.gym.find_actor_handle(env, actor)
for prop_name, prop_attrs in actor_properties.items():
if prop_name == 'color':
continue # this is set randomly
props = param_getters_map[prop_name](env, handle)
if not isinstance(props, list):
props = [props]
for prop_idx, prop in enumerate(props):
for attr, attr_randomization_params in prop_attrs.items():
name = prop_name+'_' + str(prop_idx) + '_'+attr
lo_hi = attr_randomization_params['range']
distr = attr_randomization_params['distribution']
if 'uniform' not in distr:
lo_hi = (-1.0*float('Inf'), float('Inf'))
if isinstance(prop, np.ndarray):
for attr_idx in range(prop[attr].shape[0]):
params.append(prop[attr][attr_idx])
names.append(name+'_'+str(attr_idx))
lows.append(lo_hi[0])
highs.append(lo_hi[1])
else:
params.append(getattr(prop, attr))
names.append(name)
lows.append(lo_hi[0])
highs.append(lo_hi[1])
return params, names, lows, highs
def apply_randomizations(self, dr_params):
"""Apply domain randomizations to the environment.
Note that currently we can only apply randomizations only on resets, due to current PhysX limitations
Args:
dr_params: parameters for domain randomization to use.
"""
# If we don't have a randomization frequency, randomize every step
rand_freq = dr_params.get("frequency", 1)
# First, determine what to randomize:
# - non-environment parameters when > frequency steps have passed since the last non-environment
# - physical environments in the reset buffer, which have exceeded the randomization frequency threshold
# - on the first call, randomize everything
self.last_step = self.gym.get_frame_count(self.sim)
if self.first_randomization:
do_nonenv_randomize = True
env_ids = list(range(self.num_envs))
else:
do_nonenv_randomize = (self.last_step - self.last_rand_step) >= rand_freq
rand_envs = torch.where(self.randomize_buf >= rand_freq, torch.ones_like(self.randomize_buf), torch.zeros_like(self.randomize_buf))
rand_envs = torch.logical_and(rand_envs, self.reset_buf)
env_ids = torch.nonzero(rand_envs, as_tuple=False).squeeze(-1).tolist()
self.randomize_buf[rand_envs] = 0
if do_nonenv_randomize:
self.last_rand_step = self.last_step
param_setters_map = get_property_setter_map(self.gym)
param_setter_defaults_map = get_default_setter_args(self.gym)
param_getters_map = get_property_getter_map(self.gym)
# On first iteration, check the number of buckets
if self.first_randomization:
check_buckets(self.gym, self.envs, dr_params)
for nonphysical_param in ["observations", "actions"]:
if nonphysical_param in dr_params and do_nonenv_randomize:
dist = dr_params[nonphysical_param]["distribution"]
op_type = dr_params[nonphysical_param]["operation"]
sched_type = dr_params[nonphysical_param]["schedule"] if "schedule" in dr_params[nonphysical_param] else None
sched_step = dr_params[nonphysical_param]["schedule_steps"] if "schedule" in dr_params[nonphysical_param] else None
op = operator.add if op_type == 'additive' else operator.mul
if sched_type == 'linear':
sched_scaling = 1.0 / sched_step * \
min(self.last_step, sched_step)
elif sched_type == 'constant':
sched_scaling = 0 if self.last_step < sched_step else 1
else:
sched_scaling = 1
if dist == 'gaussian':
mu, var = dr_params[nonphysical_param]["range"]
mu_corr, var_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.])
if op_type == 'additive':
mu *= sched_scaling
var *= sched_scaling
mu_corr *= sched_scaling
var_corr *= sched_scaling
elif op_type == 'scaling':
var = var * sched_scaling # scale up var over time
mu = mu * sched_scaling + 1.0 * \
(1.0 - sched_scaling) # linearly interpolate
var_corr = var_corr * sched_scaling # scale up var over time
mu_corr = mu_corr * sched_scaling + 1.0 * \
(1.0 - sched_scaling) # linearly interpolate
def noise_lambda(tensor, param_name=nonphysical_param):
params = self.dr_randomizations[param_name]
corr = params.get('corr', None)
if corr is None:
corr = torch.randn_like(tensor)
params['corr'] = corr
corr = corr * params['var_corr'] + params['mu_corr']
return op(
tensor, corr + torch.randn_like(tensor) * params['var'] + params['mu'])
self.dr_randomizations[nonphysical_param] = {'mu': mu, 'var': var, 'mu_corr': mu_corr, 'var_corr': var_corr, 'noise_lambda': noise_lambda}
elif dist == 'uniform':
lo, hi = dr_params[nonphysical_param]["range"]
lo_corr, hi_corr = dr_params[nonphysical_param].get("range_correlated", [0., 0.])
if op_type == 'additive':
lo *= sched_scaling
hi *= sched_scaling
lo_corr *= sched_scaling
hi_corr *= sched_scaling
elif op_type == 'scaling':
lo = lo * sched_scaling + 1.0 * (1.0 - sched_scaling)
hi = hi * sched_scaling + 1.0 * (1.0 - sched_scaling)
lo_corr = lo_corr * sched_scaling + 1.0 * (1.0 - sched_scaling)
hi_corr = hi_corr * sched_scaling + 1.0 * (1.0 - sched_scaling)
def noise_lambda(tensor, param_name=nonphysical_param):
params = self.dr_randomizations[param_name]
corr = params.get('corr', None)
if corr is None:
corr = torch.randn_like(tensor)
params['corr'] = corr
corr = corr * (params['hi_corr'] - params['lo_corr']) + params['lo_corr']
return op(tensor, corr + torch.rand_like(tensor) * (params['hi'] - params['lo']) + params['lo'])
self.dr_randomizations[nonphysical_param] = {'lo': lo, 'hi': hi, 'lo_corr': lo_corr, 'hi_corr': hi_corr, 'noise_lambda': noise_lambda}
if "sim_params" in dr_params and do_nonenv_randomize:
prop_attrs = dr_params["sim_params"]
prop = self.gym.get_sim_params(self.sim)
if self.first_randomization:
self.original_props["sim_params"] = {
attr: getattr(prop, attr) for attr in dir(prop)}
for attr, attr_randomization_params in prop_attrs.items():
apply_random_samples(
prop, self.original_props["sim_params"], attr, attr_randomization_params, self.last_step)
self.gym.set_sim_params(self.sim, prop)
# If self.actor_params_generator is initialized: use it to
# sample actor simulation params. This gives users the
# freedom to generate samples from arbitrary distributions,
# e.g. use full-covariance distributions instead of the DR's
# default of treating each simulation parameter independently.
extern_offsets = {}
if self.actor_params_generator is not None:
for env_id in env_ids:
self.extern_actor_params[env_id] = \
self.actor_params_generator.sample()
extern_offsets[env_id] = 0
# randomise all attributes of each actor (hand, cube etc..)
# actor_properties are (stiffness, damping etc..)
# Loop over actors, then loop over envs, then loop over their props
# and lastly loop over the ranges of the params
for actor, actor_properties in dr_params["actor_params"].items():
# Loop over all envs as this part is not tensorised yet
for env_id in env_ids:
env = self.envs[env_id]
handle = self.gym.find_actor_handle(env, actor)
extern_sample = self.extern_actor_params[env_id]
# randomise dof_props, rigid_body, rigid_shape properties
# all obtained from the YAML file
# EXAMPLE: prop name: dof_properties, rigid_body_properties, rigid_shape properties
# prop_attrs:
# {'damping': {'range': [0.3, 3.0], 'operation': 'scaling', 'distribution': 'loguniform'}
# {'stiffness': {'range': [0.75, 1.5], 'operation': 'scaling', 'distribution': 'loguniform'}
for prop_name, prop_attrs in actor_properties.items():
if prop_name == 'color':
num_bodies = self.gym.get_actor_rigid_body_count(
env, handle)
for n in range(num_bodies):
self.gym.set_rigid_body_color(env, handle, n, gymapi.MESH_VISUAL,
gymapi.Vec3(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
continue
if prop_name == 'scale':
setup_only = prop_attrs.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
attr_randomization_params = prop_attrs
sample = generate_random_samples(attr_randomization_params, 1,
self.last_step, None)
og_scale = 1
if attr_randomization_params['operation'] == 'scaling':
new_scale = og_scale * sample
elif attr_randomization_params['operation'] == 'additive':
new_scale = og_scale + sample
self.gym.set_actor_scale(env, handle, new_scale)
continue
prop = param_getters_map[prop_name](env, handle)
set_random_properties = True
if isinstance(prop, list):
if self.first_randomization:
self.original_props[prop_name] = [
{attr: getattr(p, attr) for attr in dir(p)} for p in prop]
for p, og_p in zip(prop, self.original_props[prop_name]):
for attr, attr_randomization_params in prop_attrs.items():
setup_only = attr_randomization_params.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
smpl = None
if self.actor_params_generator is not None:
smpl, extern_offsets[env_id] = get_attr_val_from_sample(
extern_sample, extern_offsets[env_id], p, attr)
apply_random_samples(
p, og_p, attr, attr_randomization_params,
self.last_step, smpl)
else:
set_random_properties = False
else:
if self.first_randomization:
self.original_props[prop_name] = deepcopy(prop)
for attr, attr_randomization_params in prop_attrs.items():
setup_only = attr_randomization_params.get('setup_only', False)
if (setup_only and not self.sim_initialized) or not setup_only:
smpl = None
if self.actor_params_generator is not None:
smpl, extern_offsets[env_id] = get_attr_val_from_sample(
extern_sample, extern_offsets[env_id], prop, attr)
apply_random_samples(
prop, self.original_props[prop_name], attr,
attr_randomization_params, self.last_step, smpl)
else:
set_random_properties = False
if set_random_properties:
setter = param_setters_map[prop_name]
default_args = param_setter_defaults_map[prop_name]
setter(env, handle, prop, *default_args)
if self.actor_params_generator is not None:
for env_id in env_ids: # check that we used all dims in sample
if extern_offsets[env_id] > 0:
extern_sample = self.extern_actor_params[env_id]
if extern_offsets[env_id] != extern_sample.shape[0]:
print('env_id', env_id,
'extern_offset', extern_offsets[env_id],
'vs extern_sample.shape', extern_sample.shape)
raise Exception("Invalid extern_sample size")
self.first_randomization = False