Skip to content

Latest commit

 

History

History
173 lines (132 loc) · 7.21 KB

README.md

File metadata and controls

173 lines (132 loc) · 7.21 KB

Benchmarks Targeted for Jetson (Using GPU+2DLA)

The script will run following Benchmarks:

  • Names : Input Image Resolution
  • Inception V4 : 299x299
  • ResNet-50 : 224x224
  • OpenPose : 256x456
  • VGG-19 : 224x224
  • YOLO-V3 : 608x608
  • Super Resolution : 481x321
  • Unet : 256x256

For benchmark results on all NVIDIA Jetson Products; please have a look at NVIDIA jetson_benchmark webpage

Following scripts are included:

  1. Installation requirements for running benchmark script (install_requirements.sh)
  2. CSV files containing parameters (benchmark_csv folder)
  3. Download Model (utils/download_models.py)
  4. Running Benchmark Script (benchmarks.py)

Version Dependencies:

  • JetPack 4.4+
  • TensorRT 7+

Set up instructions

git clone https://github.com/NVIDIA-AI-IOT/jetson_benchmarks.git
cd jetson_benchmarks
mkdir models # Open folder to store models (Optional)

Install Requirements

sudo sh install_requirements.sh
Note: All libraries will be installed for python3

For Jetson Xavier NX

Download Models

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running Benchmarks

Running All Benchmark Models at Once

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

Sample Output

Model Name FPS
inception_v4 311.73
vgg19_N2 66.43
super_resolution_bsd500 150.46
unet-segmentation 145.42
pose_estimation 237.1
yolov3-tiny-416 546.69
ResNet50_224x224 824.02
ssd-mobilenet-v1 887.6

Running an Individual Benchmark Model

  1. For Inception V4
    sudo python3 benchmark.py --model_name inception_v4 --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  2. For VGG19
    sudo python3 benchmark.py --model_name vgg19 --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  3. For Super Resolution
    sudo python3 benchmark.py --model_name super_resolution --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  4. For UNET Segmentation
    sudo python3 benchmark.py --model_name unet --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  5. For Pose Estimation
    sudo python3 benchmark.py --model_name pose_estimation --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  6. For Tiny-YOLO-V3
    sudo python3 benchmark.py --model_name tiny-yolov3 --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  7. For ResNet-50
    sudo python3 benchmark.py --model_name resnet --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

  8. For SSD-MobileNet-V1 Segmentation
    sudo python3 benchmark.py --model_name ssd-mobilenet-v1 --csv_file_path <path-to>/benchmark_csv/nx-benchmarks.csv --model_dir <absolute-path-to-downloaded-models>

For Jetson AGX Xavier

Please follow setup and installation requirements.

Download Models

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/xavier-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Jetson AGX Xavier

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/xavier-benchmarks.csv \
                          --model_dir <absolute-path-to-downloaded-models> \
                          --jetson_devkit xavier \
                          --gpu_freq 1377000000 --dla_freq 1395200000 --power_mode 0 --jetson_clocks

For Jetson TX2 and Jetson Nano

Please follow setup and installation requirements.

Download Models

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/tx2-nano-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Jetson TX2

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/tx2-nano-benchmarks.csv \
                            --model_dir <absolute-path-to-downloaded-models> \
                            --jetson_devkit tx2 \
                            --gpu_freq 1122000000 --power_mode 3 --precision fp16

Running All Benchmark Models at Once on Jetson Nano

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/tx2-nano-benchmarks.csv \
                            --model_dir <absolute-path-to-downloaded-models> \
                            --jetson_devkit nano \
                            --gpu_freq 921600000 --power_mode 0 --precision fp16

For Jetson Orin

Please follow setup and installation requirements.

Download Models

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/orin-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Orin

Please check if Orin is in MAX power mode: nvpmodel -q
It should say:

NV Power Mode: MAXN
0

If it isn't, set it to MAX power mode: sudo nvpmodel -m 0. Then run:

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/orin-benchmarks.csv \
                          --model_dir <absolute-path-to-downloaded-models>

For Jetson Orin Nano

Please follow setup and installation requirements.

Download Models

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/orin-nano-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Orin Nano

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/orin-nano-benchmarks.csv \
                          --model_dir <absolute-path-to-downloaded-models> --jetson_clocks

For Jetson Orin NX

Please follow setup and installation requirements.

Download Models for Orin NX 8GB

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/orin-nx-8gb-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Orin NX 8GB

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/orin-nx-8gb-benchmarks.csv \
                          --model_dir <absolute-path-to-downloaded-models>

Download Models for Orin NX 16GB

python3 utils/download_models.py --all --csv_file_path <path-to>/benchmark_csv/orin-nx-16gb-benchmarks.csv --save_dir <absolute-path-to-downloaded-models>

Running All Benchmark Models at Once on Orin NX 16GB

sudo python3 benchmark.py --all --csv_file_path <path-to>/benchmark_csv/orin-nx-16gb-benchmarks.csv \
                          --model_dir <absolute-path-to-downloaded-models>