Skip to content

Commit

Permalink
Merge branch 'master' into add-sigan-interface-metadata-properties
Browse files Browse the repository at this point in the history
  • Loading branch information
dboulware authored Jan 5, 2024
2 parents 13d930a + 1eb6265 commit c50d64e
Show file tree
Hide file tree
Showing 4 changed files with 35 additions and 30 deletions.
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -23,19 +23,19 @@ repos:
- id: pyupgrade
args: ["--py38-plus"]
- repo: https://github.com/pycqa/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
types: [file, python]
args: ["--profile", "black", "--filter-files", "--gitignore"]
- repo: https://github.com/psf/black
rev: 23.10.1
rev: 23.12.1
hooks:
- id: black
types: [file, python]
- repo: https://github.com/igorshubovych/markdownlint-cli
rev: v0.37.0
rev: v0.38.0
hooks:
- id: markdownlint
types: [file, markdown]
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ dependencies = [
"numpy>=1.22.0",
"psutil>=5.9.4",
"python-dateutil>=2.0",
"ray>=2.4.0",
"ray>=2.6.3,<2.8.0",
"ruamel.yaml>=0.15",
"scipy>=1.8.0",
"sigmf @ git+https://github.com/NTIA/SigMF@multi-recording-archive",
Expand Down
1 change: 1 addition & 0 deletions scos_actions/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
__version__ = "7.1.0"

56 changes: 30 additions & 26 deletions scos_actions/actions/acquire_sea_data_product.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,8 @@
# Constants
DATA_TYPE = np.half
PFP_FRAME_RESOLUTION_S = (1e-3 * (1 + 1 / (14)) / 15) / 4
FFT_SIZE = 875
FFT_SIZE = 175 # 80 kHz resolution @ 14 MHz sampling rate
FFT_PERCENTILES = np.array([25, 75, 90, 95, 99, 99.9, 99.99])
FFT_WINDOW_TYPE = "flattop"
FFT_WINDOW = get_fft_window(FFT_WINDOW_TYPE, FFT_SIZE)
FFT_WINDOW_ECF = get_fft_window_correction(FFT_WINDOW, "energy")
Expand All @@ -119,8 +120,8 @@
NUM_ACTORS = 3 # Number of ray actors to initialize

# Create power detectors
TD_DETECTOR = create_statistical_detector("TdMeanMaxDetector", ["mean", "max"])
FFT_DETECTOR = create_statistical_detector("FftMeanMaxDetector", ["mean", "max"])
TD_DETECTOR = create_statistical_detector("TdMeanMaxDetector", ["max", "mean"])
FFT_M3_DETECTOR = create_statistical_detector("FftM3Detector", ["max", "mean", "median"])
PFP_M3_DETECTOR = create_statistical_detector("PfpM3Detector", ["min", "max", "mean"])


Expand All @@ -142,20 +143,22 @@ def __init__(
fft_size: int = FFT_SIZE,
fft_window: np.ndarray = FFT_WINDOW,
window_ecf: float = FFT_WINDOW_ECF,
detector: EnumMeta = FFT_DETECTOR,
detector: EnumMeta = FFT_M3_DETECTOR,
percentiles: np.ndarray = FFT_PERCENTILES,
impedance_ohms: float = IMPEDANCE_OHMS,
):
self.detector = detector
self.percentiles = percentiles
self.fft_size = fft_size
self.fft_window = fft_window
self.num_ffts = num_ffts
# Get truncation points: truncate FFT result to middle 625 samples (middle 10 MHz from 14 MHz)
self.bin_start = int(fft_size / 7) # bin_start = 125 with FFT_SIZE 875
self.bin_end = fft_size - self.bin_start # bin_end = 750 with FFT_SIZE 875
# Get truncation points: truncate FFT result to middle 125 samples (middle 10 MHz from 14 MHz)
self.bin_start = int(fft_size / 7) # bin_start = 25 with FFT_SIZE 175
self.bin_end = fft_size - self.bin_start # bin_end = 150 with FFT_SIZE 175
# Compute the amplitude shift for PSD scaling. The FFT result
# is in pseudo-power log units and must be scaled to a PSD.
self.fft_scale_factor = (
-10.0 * np.log10(impedance_ohms) # Pseudo-power to power
- 10.0 * np.log10(impedance_ohms) # Pseudo-power to power
+ 27.0 # Watts to dBm (+30) and baseband to RF (-3)
- 10.0 * np.log10(sample_rate_Hz * fft_size) # PSD scaling
+ 20.0 * np.log10(window_ecf) # Window energy correction
Expand All @@ -170,20 +173,23 @@ def run(self, iq: ray.ObjectRef) -> np.ndarray:
:return: A 2D NumPy array of statistical detector results computed
from PSD amplitudes, ordered (max, mean).
"""
fft_result = get_fft(
fft_amplitudes = get_fft(
iq, self.fft_size, "backward", self.fft_window, self.num_ffts, False, 1
)
fft_result = calculate_pseudo_power(fft_result)
fft_result = apply_statistical_detector(
fft_result, self.detector
) # (max, mean)
# Power in Watts
fft_amplitudes = calculate_pseudo_power(fft_amplitudes)
fft_result = apply_statistical_detector(fft_amplitudes, self.detector) # (max, mean, median)
percentile_result = np.percentile(fft_amplitudes, self.percentiles, axis=0)
fft_result = np.vstack((fft_result, percentile_result))
fft_result = np.fft.fftshift(fft_result, axes=(1,)) # Shift frequencies
fft_result = fft_result[
:, self.bin_start : self.bin_end
] # Truncation to middle bins
fft_result = 10.0 * np.log10(fft_result) + self.fft_scale_factor

# Returned order is (max, mean)
# Returned order is (max, mean, median, 25%, 75%, 90%, 95%, 99%, 99.9%, 99.99%)
# Total of 10 arrays, each of length 125 (output shape (10, 125))
# Percentile computation linearly interpolates. See numpy documentation.
return fft_result


Expand Down Expand Up @@ -988,18 +994,15 @@ def create_global_data_product_metadata(self) -> None:
self.sigmf_builder.set_processing_info([iir_obj, dft_obj])

psd_length = int(FFT_SIZE * (5 / 7))
psd_bin_center_offset = p[SAMPLE_RATE] / FFT_SIZE / 2
psd_x_axis__Hz = np.arange(psd_length) * (
(p[SAMPLE_RATE] / FFT_SIZE)
- (p[SAMPLE_RATE] * (5 / 7) / 2)
+ psd_bin_center_offset
)
psd_bin_start = int(FFT_SIZE / 7) # bin_start = 125 with FFT_SIZE 875
psd_bin_end = FFT_SIZE - psd_bin_start # bin_end = 750 with FFT_SIZE 875
psd_x_axis__Hz = get_fft_frequencies(FFT_SIZE, 14e6, 0.0) # Baseband
psd_x_axis__Hz = get_fft_frequencies(FFT_SIZE, p[SAMPLE_RATE], 0.0) # Baseband
psd_graph = ntia_algorithm.Graph(
name="Power Spectral Density",
series=[d.value for d in FFT_DETECTOR], # ["max", "mean"]
series=[d.value for d in FFT_M3_DETECTOR]
+ [
f"{int(p)}th_percentile" if p.is_integer() else f"{p}th_percentile" for p in FFT_PERCENTILES
], # ["max", "mean", "median", "25th_percentile", "75th_percentile", ... "99.99th_percentile"]
length=int(FFT_SIZE * (5 / 7)),
x_units="Hz",
x_start=[psd_x_axis__Hz[psd_bin_start]],
Expand All @@ -1009,9 +1012,10 @@ def create_global_data_product_metadata(self) -> None:
processing=[dft_obj.id],
reference=DATA_REFERENCE_POINT,
description=(
"Max- and mean-detected power spectral density, with the "
+ f"first and last {int(FFT_SIZE / 7)} samples discarded. "
+ "FFTs computed on IIR-filtered data."
"Results of statistical detectors (max, mean, median, 25th_percentile, 75th_percentile, "
+ "90th_percentile, 95th_percentile, 99th_percentile, 99.9th_percentile, 99.99th_percentile) "
+ f"applied to power spectral density samples, with the first and last {int(FFT_SIZE / 7)} "
+ "samples discarded. FFTs computed on IIR-filtered data."
),
)

Expand Down Expand Up @@ -1089,7 +1093,7 @@ def create_global_data_product_metadata(self) -> None:
[psd_graph, pvt_graph, pfp_graph, apd_graph]
)
self.total_channel_data_length = (
psd_length * len(FFT_DETECTOR)
psd_length * (len(FFT_M3_DETECTOR) + len(FFT_PERCENTILES))
+ pvt_length * len(TD_DETECTOR)
+ pfp_length * len(PFP_M3_DETECTOR) * 2
+ apd_graph.length
Expand Down

0 comments on commit c50d64e

Please sign in to comment.