
WiSE-MNet
(Wireless Multimedia Sensor Networks)

Overview & hands-on

Juan C. SanMiguel

Centre for Intelligent Sensing
Queen Mary University of London

2/26

Outline

• Introduction

• Existing simulators

• Basics

• Description (components and extensions)

• Hands-on (installation, GUI and running an app)

• Conclusions

3/26

Introduction: why simulators for Camera Networks

Cameras
 Sensing
 Processing
 Communication
 Battery-powered
 …

Network
 Collaboration
 Adaptation
 Scalability
 …

Reproducibility

DESIRES

 External factors

4/26

Existing simulators for camera networks

Code Type Resources Processing Comms Extendable Focus

OVVV
[CVPR2007]

C++
(Win)

3D - - - No Virtual
worlds

 SLCNR*
 [IEEE JETCAS2013]

C++
(Win)

3D - Vision
routines

- Yes Virtual
worlds

CAMSIM
[SISO2013]

Java 2D - - Protocols Yes Coordination

WSVN**
[WMCNC2010]

C++
(Linux)

2D Battery, clock,
memory

- Wireless,
MAC

~ Video
monitoring

M3WSN**
[Simutools13]

C++
(Linux)

2D Battery, clock,
memory

- Wireless,
MAC

Code not
released

Multimedia
TX

WiSE-Mnet**
[SSPD2011]

C++
(Linux)

2D Battery, clock,
memory

Cameras &
trackers

Wireless,
dummy

Yes Camera
networks

*Paid license required
**Requires the libraries: Omnet++ and Castalia

5/26

Outline

• Introduction

• Existing simulators

• Basics

• Description (components and extensions)

• Hands-on (installation, GUI and running an app)

• Conclusions

6/26

WiSE basics: Omnet++

• Generic discrete-event simulation engine
• Generic modules interactions can be defined

– behaviour is coded in C++
– interconnections/composition specified through a Network

Description (NED) language
– parameters can be set through configuration files

• Highly flexible and extensible with external libraries
• Network elements

– nodes, protocols, channels
– provided (externally) as simulation models (INET, MiXiM, Castalia)

http://www.omnetpp.org
Slide credit: C. Nastasi & A. Cavallaro, 2011

http://www.omnetpp.org/

7/26

WiSE basics: Castalia

• Wireless sensor networks (WSNs), body area networks
(BANs) and networks of low-power embedded devices

• Defines the wireless environment and the node architecture

http://castalia.npc.nicta.com.au/

http://castalia.npc.nicta.com.au/
http://castalia.npc.nicta.com.au/
http://castalia.npc.nicta.com.au/
http://castalia.npc.nicta.com.au/

8/26

WiSE basics: architecture

• WiSE extends Castalia for Wireless Camera Networks

WiSEXXX files  extensions

9/26

WiSE basics: discrete event simulation

• Every sensor/node is independent
• There is no linear script (Matlab) or main (C/C++ projects)
• Omnet++ automatically starts nodes and physical processes

• Communication: message exchange between nodes
• Processing: received messages in discrete units

Tic Toc example
More info at http://goo.gl/L3SYBo

http://goo.gl/L3SYBo

10/26

Outline

• Introduction

• Existing simulators

• Basics

• Description (components and extensions)

• Hands-on (installation, GUI and running an app)

• Conclusions

11/26

WiSE components: NED files

• Describe internal/external connections

Source code in
.h, .c and .cc

files

12/26

WiSE components: sensing

• Moving targets are represented as "Physical processes"
– 2D targets --> moving squares (position and size)
– Type of motion (linear, random,...)
– Frequency for updating position

• Sensing
– Return data only if target is within Field of View (but reads all!)
– WiseCameraSimplePeriodicTracker class implements iterative

sensing --> frequency to be set

Target position update might be
different to sensing frequency

13/26

WiSE components: applications

• Sensor logic (processing, receive/send messages,...)
• Application class hierarchy

 Comms (neighborgs, interface)

FOVs (neighborgs)

Interface for
camera sensing

Template for target tracking
(finite-state-machine)

Logic of the application
(processing & data exchange)

14/26

WiSE components: application (initialization)

• Startup() method

• Set timers to define
node's behaviour
(e.g., sensing rate)

• Initialize variables

15/26

WiSE components: application (processing)

Timer callback
(repetitive task)

Response to
received message
(on-demand task)

fromNetworkLayer()

timerFiredCallback()

16/26

WiSE components: application (communication)

• Via packets
– Defined in *.msg files
– Contains the variables
– Depends on application

• Send packets to network:

– Specific nodes
(in WiseBaseApplication.cc)

– Comms/vision graph
(In WiseCameraSimplePeriodicTracker.cc)

• Channel: wireless (real) and dummy (ideal)

toNetworkLayer()

send_messageNeighboursCOM()
send_messageNeighboursFOV()

WiseCameraICFMsg.msg

17/26

WiSE extensions

• Capturing from Video files
• Directional sensing (2D FOV)
• Communication/Vision graphs
• Buffer for synchronized comms
• Algorithms

– Single target tracking
• Kalman Consensus Filter (KFC)
• Information Weighted Consensus Filter (IWCF)

– Multiple target tracking
• Information Weighted Consensus Filter (IWCF-NN)

18/26

Outline

• Introduction

• Existing simulators

• Basics

• Description (components and extensions)

• Hands-on (installation, GUI and creating/running an app)

• Conclusions

19/26

WiSE hands-on: installation

1. Install dependencies of Omnet++
2. Install Omnet++
3. Install dependencies of OpenCV
4. Install OpenCV
5. Download WiSE package*
6. Setup a project using the WiSE package*

*Identical installation for Castalia (not required as it is included in WiSE)

Only runs in Linux!!!
(can run in Windows without OpenCV)

20/26

WiSE hands-on: GUI

Simulations

WiSE code

Castalia

debug
Code docs

21/26

WiSE hands-on: creating an app (1/2)

• New trackers as derived classes of WiseCameraSimplePeriodicTracker

WAIT FIRST
SAMPLE

INIT

WAIT END
FIRST

 SAMPLE

WAIT
SAMPLE

WAIT
END

SAMPLE

Startup

Init resources()
Defines sampling instants

t = sample_life
t = 0

t = sample_tracker – sample_life

t = sample_tracker – sample_life

t = sample_life

At_first_sample()

At_first_end_sample() At_sample() At_end_sample()

22/26

WiSE hands-on: creating an app (2/2)

Functions to implement
from tracking template

Functions to implement from base template

23/26

WiSE hands-on: running an app (1/2)

• Configuration (ini files)

24/26

WiSE hands-on: running an app (2/2)

• GUI

25/26

WiSE hands-on: example

26/26

Conclusions

• WiSE enables research on camera networks via
simulations of realistic environments
– Resource constraints
– Coordination among cameras
– Real communication protocols
– Image/Video processing tools

• Expertise required
– C/C++ language
– Linux programming skills (gcc compiler)
– Non-linear design (i.e. collaborative processing)

• Ongoing work: develop resource-limited scenarios

References

OVVV: G. Taylor, A. Chosak, and P. Brewer, “OVVV: Using virtual worlds to design and evaluate
surveillance systems,” pp. 1-8, CVPR 2007. http://development.objectvideo.com/

SLCNR: W. Starzyk and F. Qureshi, “Software laboratory for camera networks research,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 62(2): 284–293, June 2013.
http://vclab.science.uoit.ca/~faisal/projects/vvs/index.html

CAMSIM: L. Esterle, P. R. Lewis, H. Caine, X. Yao, and B. Rinner, “CamSim: A Distributed Smart Camera
Network Simulator,” in Proc. of the IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems
Workshops, pp. 1-2, Sept. 2013 https://github.com/EPiCS/CamSim

WSVN: A. Pham, C.; Makhoul, “Performance study of multiple cover-set strategies for mission-critical
video surveillance with wireless video sensors,” in IEEE Int. Conf. on Wireless and Mobile Computing,
Networking and Communications., pp. 208-216, Oct. 2010, http://web.univ-pau.fr/~cpham/WSN-
MODEL/wvsn.html

M3WSN: D. Rosario, Z. Zhao, C. Silva, E. Cerqueira, and T. Braun, “An OMNeT++ framework to evaluate
video transmission in mobile wireless multimedia sensor networks,” in Proc. of the Int. ICST Conf. on
Simulation Tools and Techniques, pp. 277–284, Mar. 2013. http://cds.unibe.ch/research/M3WSN/
WiSE: C. Nastasi, A. Cavallaro, "WiSE-MNet: an experimental environment for Wireless Multimedia
Sensor Networks", Proc. of Sensor Signal Processing for Defence (SSPD), London, UK, 28-29 September,
2011 http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

http://development.objectvideo.com/
http://vclab.science.uoit.ca/~faisal/projects/vvs/index.html
https://github.com/EPiCS/CamSim
http://web.univ-pau.fr/~cpham/WSN-MODEL/wvsn.html
http://web.univ-pau.fr/~cpham/WSN-MODEL/wvsn.html
http://cds.unibe.ch/research/M3WSN/
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

References

Implemented algorithms

KFC: Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and cooperation in networked
multi-agent systems. In Proceedings of theIEEE, 2007

IWCF: A. T. Kamal, J. A. Farrell, A. K. Roy-Chowdhury Information Weighted Consensus Filters and their
Application in Distributed Camera Networks, , IEEE Transactions on Automatic Control, 2013

ICF-NN: A. T. Kamal, J. A. Farrell, A. K. Roy-Chowdhury, Information Consensus for Distributed Multi-
Target Tracking,, IEEE Conf. on Computer Vision and Pattern Recognition, 2013

Additional resources: links

• Tutorials Omnet++
– http://www.omnetpp.org/doc/omnetpp/tictoc-tutorial/
– http://titania.ctie.monash.edu.au/netperf/netperf-omnetpp-ide-

getting-started.pdf
– http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-

UPPA/PROTOCOLES/omnetp.pdf

• Tutorials Castalia

– http://castalia.npc.nicta.com.au/documentation.php

• Tutorials WiSE
– http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

http://www.omnetpp.org/doc/omnetpp/tictoc-tutorial/
http://titania.ctie.monash.edu.au/netperf/netperf-omnetpp-ide-getting-started.pdf
http://titania.ctie.monash.edu.au/netperf/netperf-omnetpp-ide-getting-started.pdf
http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/PROTOCOLES/omnetp.pdf
http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/PROTOCOLES/omnetp.pdf
http://castalia.npc.nicta.com.au/documentation.php
http://www.eecs.qmul.ac.uk/~andrea/wise-mnet.html

Additional resources: capturing data pipeline

WiseCameraAppTest.startup

WiseCameraAppTest.timeFiredCallback

WiseCameraApplication.requestSensorReading

WisebaseSensorManager.handleMessage

WisebaseSensorManager.ProcessSampleRequest

WiseMovingTarget.handleMessage

WiseBaseSensorManager.handleMessage

WiseCameraManager.handleSample

WiseCameraHandle

WiseCameraDetections.process

Msg ALARM_SENSOR_EXAMPLE

Msg SENSOR_READING_MSG & WISE_SENS_NORMAL

Request of data

Get position of
target if in FOV

To all targets Msg PHYSICAL_PROCESS_SAMPLING

Msg PHYSICAL_PROCESS_SAMPLING

SensorDeviceManager

ALARM_SENSOR_EXAMPLE

MovingTargets

Additional resources: synchronization problem

 𝑛2 𝑛1

 𝑛0

TX data (𝑡2) TX data (𝑡1)

Implicit coordination strategies require to fuse all neighbour data of the same iteration (ie,
iterations of the consensus approach)
 Data from same iterations received at different time instants (𝑡1 ≠ 𝑡2)

Solution (for consensus)
Implement a buffer that stores the data of different iterations. Each node will:
 - Save up to MAX_TAM_SIZE iterations of consensus in the buffer
 - When receiving data, it will be stored in the corresponding buffer position
 - When the last data for an iteration of consensus is received, perform
 iteration and free the buffer position for other future iterations

	WiSE-MNet �(Wireless Multimedia Sensor Networks)��Overview & hands-on�
	Outline
	Introduction: why simulators for Camera Networks
	Existing simulators for camera networks
	Outline
	WiSE basics: Omnet++
	WiSE basics: Castalia
	WiSE basics: architecture
	WiSE basics: discrete event simulation
	Outline
	WiSE components: NED files
	WiSE components: sensing
	WiSE components: applications
	WiSE components: application (initialization)
	WiSE components: application (processing)
	WiSE components: application (communication)
	WiSE extensions
	Outline
	WiSE hands-on: installation
	WiSE hands-on: GUI
	WiSE hands-on: creating an app (1/2)
	WiSE hands-on: creating an app (2/2)
	WiSE hands-on: running an app (1/2)
	WiSE hands-on: running an app (2/2)
	WiSE hands-on: example
	Conclusions
	Número de diapositiva 27
	References
	References
	Additional resources: links
	Additional resources: capturing data pipeline
	Additional resources: synchronization problem

