-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
44 lines (35 loc) · 1.36 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from flask import Flask, request, jsonify, render_template
import pickle
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
application = Flask(__name__)
app = application
# import ridge regressor model and standard scaler pickle
ridge_model = pickle.load(open("models/ridge.pkl", "rb"))
standard_scaler = pickle.load(open("models/scaler.pkl", "rb"))
# Route for home page
@app.route("/")
def index():
return render_template("index.html")
@app.route("/predictdata", methods=["GET", "POST"])
def predict_datapoint():
if request.method == "POST":
Temperature = float(request.form.get("Temperature"))
RH = float(request.form.get("RH"))
Ws = float(request.form.get("Ws"))
Rain = float(request.form.get("Rain"))
FFMC = float(request.form.get("FFMC"))
DMC = float(request.form.get("DMC"))
ISI = float(request.form.get("ISI"))
Classes = float(request.form.get("Classes"))
Region = float(request.form.get("Region"))
new_data_scaled = standard_scaler.transform(
[[Temperature, RH, Ws, Rain, FFMC, DMC, ISI, Classes, Region]]
)
result = ridge_model.predict(new_data_scaled)[0]
return render_template("home.html", result=result)
else:
return render_template("home.html")
if __name__ == "__main__":
app.run(host="0.0.0.0")