-
Notifications
You must be signed in to change notification settings - Fork 1
/
dcgan.py
162 lines (148 loc) · 6 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Reshape
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import UpSampling2D
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import Flatten
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.datasets import mnist
import numpy as np
from PIL import Image
import argparse
import math
import tensorflow as tf
def generator_model():
model = Sequential()
model.add(Dense(256*7*7,input_shape=(100,)))
model.add(Activation('tanh'))
model.add(Dense(128*7*7))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Reshape((7, 7, 128), input_shape=(128*7*7,)))
model.add(UpSampling2D(size=(2, 2)))
model.add(Conv2D(64, (5, 5), padding='same'))
model.add(Activation('tanh'))
model.add(UpSampling2D(size=(2, 2)))
model.add(Conv2D(1, (5, 5), padding='same'))
model.add(Activation('tanh'))
return model
def discriminator_model():
model = Sequential()
model.add(
Conv2D(64, (5, 5),
padding='same',
input_shape=(28, 28, 1))
)
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (5, 5)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('tanh'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
def generator_containing_discriminator(g, d):
model = Sequential()
model.add(g)
d.trainable = False
model.add(d)
return model
def combine_images(generated_images):
num = generated_images.shape[0]
width = int(math.sqrt(num))
height = int(math.ceil(float(num)/width))
shape = generated_images.shape[1:3]
image = np.zeros((height*shape[0], width*shape[1]),
dtype=generated_images.dtype)
for index, img in enumerate(generated_images):
i = int(index/width)
j = index % width
image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1]] = \
img[:, :, 0]
return image
def train(BATCH_SIZE):
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5)/127.5
X_train = X_train[:, :, :, None]
X_test = X_test[:, :, :, None]
# X_train = X_train.reshape((X_train.shape, 1) + X_train.shape[1:])
d = discriminator_model()
g = generator_model()
d_on_g = generator_containing_discriminator(g, d)
d_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
g_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
g.compile(loss='binary_crossentropy', optimizer="SGD")
d_on_g.compile(loss='binary_crossentropy', optimizer=g_optim)
d.trainable = True
d.compile(loss='binary_crossentropy', optimizer=d_optim)
for epoch in range(100):
print("Epoch is", epoch)
print("Number of batches", int(X_train.shape[0]/BATCH_SIZE))
for index in range(int(X_train.shape[0]/BATCH_SIZE)):
noise = np.random.uniform(-1, 1, size=(BATCH_SIZE, 100))
image_batch = X_train[index*BATCH_SIZE:(index+1)*BATCH_SIZE]
generated_images = g.predict(noise, verbose=0)
if index % 20 == 0:
image = combine_images(generated_images)
image = image*127.5+127.5
Image.fromarray(image.astype(np.uint8)).save(
str(epoch)+"_"+str(index)+".png")
X = np.concatenate((image_batch, generated_images))
y = [1] * BATCH_SIZE + [0] * BATCH_SIZE
d_loss = d.train_on_batch(X, y)
print("batch %d d_loss : %f" % (index, d_loss))
noise = np.random.uniform(-1, 1, (BATCH_SIZE, 100))
d.trainable = False
g_loss = d_on_g.train_on_batch(noise, [1] * BATCH_SIZE)
d.trainable = True
print("batch %d g_loss : %f" % (index, g_loss))
if index % 10 == 9:
g.save_weights('generator', True)
d.save_weights('discriminator', True)
def generate(BATCH_SIZE, nice=False):
g = generator_model()
g.compile(loss='binary_crossentropy', optimizer="SGD")
g.load_weights('generator')
if nice:
d = discriminator_model()
d.compile(loss='binary_crossentropy', optimizer="SGD")
d.load_weights('discriminator')
noise = np.random.uniform(-1, 1, (BATCH_SIZE*20, 100))
generated_images = g.predict(noise, verbose=1)
d_pret = d.predict(generated_images, verbose=1)
index = np.arange(0, BATCH_SIZE*20)
index.resize((BATCH_SIZE*20, 1))
pre_with_index = list(np.append(d_pret, index, axis=1))
pre_with_index.sort(key=lambda x: x[0], reverse=True)
nice_images = np.zeros((BATCH_SIZE,) + generated_images.shape[1:3], dtype=np.float32)
nice_images = nice_images[:, :, :, None]
for i in range(BATCH_SIZE):
idx = int(pre_with_index[i][1])
nice_images[i, :, :, 0] = generated_images[idx, :, :, 0]
image = combine_images(nice_images)
else:
noise = np.random.uniform(-1, 1, (BATCH_SIZE, 100))
generated_images = g.predict(noise, verbose=1)
image = combine_images(generated_images)
image = image*127.5+127.5
Image.fromarray(image.astype(np.uint8)).save(
"generated_image.png")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--nice", dest="nice", action="store_true")
parser.set_defaults(nice=False)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
if args.mode == "train":
train(BATCH_SIZE=args.batch_size)
elif args.mode == "generate":
generate(BATCH_SIZE=args.batch_size, nice=args.nice)