-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA Analysis Codes.Rmd
108 lines (90 loc) · 3.77 KB
/
PCA Analysis Codes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
title: "NormToTotalIonAboundances"
author: "Mona Khorani"
date: '2023-03-10'
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
install.packages("dplyr")
```
```{r}
library(tidyverse)
library(dplyr)
library(magrittr)
library(readxl)
library(tidyverse)
library(openxlsx)
library(MetaboAnalystR)
library(qs)
```
*********************************************************************
***PCA Analysis***
#PCA Analysis Raw Data:All groups
```{r}
mSet<-InitDataObjects("conc", "stat", FALSE);
mSet<-Read.TextData(mSet,"135Lipids-NormData_TIA-LogTra.csv","colu","disc")
mSet<-SanityCheckData(mSet);
mSet<-ReplaceMin(mSet);
mSet<-FilterVariable(mSet, "none", "F", 25)
mSet<-PreparePrenormData(mSet);
mSet<-Normalization(mSet, "NULL", "NULL", "NULL", ratio=FALSE, ratioNum=20)
mSet <- PCA.Anal(mSet)
mSet<-GetGroupNames(mSet, "null")
colVec<-c("#82345A","#c00000","#B00080","#c71585","#4169E1","#6495ED","#87CEFA","#1E90FF", "#3C1321","#00008B","#006400")
shapeVec<-c(1,2,3,4,5,6,7,8,9,10,11)
mSet<-UpdateGraphSettings(mSet, colVec, shapeVec)
mSet <- PlotPCAPairSummary(mSet, "test", "png", 300, width=NA, 5)
mSet<- PlotPCAScree(mSet,"pca_scree_0_testl", "png",300, width=NA, 5)
mSet <- PlotPCA2DScore(mSet, "pca_score2d_0_test", "png", 300, width=NA, 1,2,0.95,1,0)
mSet <- PlotPCALoading(mSet, "pca_loading_0_test", "png", 300, width=NA, 1,2);
mSet <- PlotPCABiplot(mSet, "pca_biplot_0_test", "png", 300, width=NA, 1,2)
mSet <- PlotPCA3DScoreImg(mSet, "pca_score3d_0_test", "png", 300, width=NA, 1,2,3, 40)
```
#Raw Data:Only Hip
#PCA Analysis
```{r}
mSet2<-InitDataObjects("conc", "stat", FALSE);
mSet2<-Read.TextData(mSet2,"Hip-135Lipids-NormData_TIA-LogTra.csv","colu","disc")
mSet2<-SanityCheckData(mSet2);
mSet2<-ReplaceMin(mSet2);
mSet2<-FilterVariable(mSet2, "none", "F", 25)
mSet2<-PreparePrenormData(mSet2);
mSet2<-Normalization(mSet2, "NULL", "NULL", "NULL", ratio=FALSE, ratioNum=20)
mSet2 <- PCA.Anal(mSet2)
mSet2 <- PCA.Anal(mSet2)
mSet2<-GetGroupNames(mSet2, "null")
colVec<-c("#4169E1","#6495ED","#87CEFA","#1E90FF","#00008B")
shapeVec<-c(1,2,3,4,5,6,7,8,9,10,11)
mSet2<-UpdateGraphSettings(mSet2, colVec, shapeVec)
mSet2 <- PlotPCAPairSummary(mSet2, "pca_pair_0_RH", "png", 300, width=NA, 5)
mSet2 <- PlotPCAScree(mSet2, "pca_scree_0_RH", "png",300, width=NA, 5)
mSet2 <- PlotPCA2DScore(mSet2, "pca_score2d_0_RH", "png", 300, width=NA, 1,2,0.95,1,0)
mSet2 <- PlotPCALoading(mSet2, "pca_loading_0_RH", "png", 300, width=NA, 1,2);
mSet2 <- PlotPCABiplot(mSet2, "pca_biplot_0_RH", "png", 300, width=NA, 1,2)
mSet2 <- PlotPCA3DScoreImg(mSet2, "pca_score3d_0_RH", "png", 300, width=NA, 1,2,3, 40)
```
#Raw Data:Only Cortx
#PCA Analysis
```{r}
mSet3<-InitDataObjects("msspec", "stat", FALSE);
mSet3<-Read.TextData(mSet3,"Cortx-135Lipids-NormData_TIA-LogTra.csv","colu","disc")
mSet3<-SanityCheckData(mSet3);
mSet3<-ReplaceMin(mSet3);
mSet3<-FilterVariable(mSet3, "none", "F", 25)
mSet3<-PreparePrenormData(mSet3);
mSet3<-Normalization(mSet3, "NULL", "NULL", "NULL", ratio=FALSE, ratioNum=20)
mSet3 <- PCA.Anal(mSet3)
mSet3<-GetGroupNames(mSet3, "null")
colVec<-c("#82345A","#c00000","#B00080","#c71585","#3C1321")
shapeVec<-c(1,2,3,4,5,6,7,8,9,10,11)
mSet3<-UpdateGraphSettings(mSet3, colVec, shapeVec)
mSet3 <- PlotPCAPairSummary(mSet3, "pca_pair_0_RC", "png", 300, width=NA, 5)
mSet3 <- PlotPCAScree(mSet3, "pca_scree_0_RC", "png",300, width=NA, 5)
mSet3 <- PlotPCA2DScore(mSet3, "pca_score2d_0_RC", "png", 300, width=NA, 1,2,0.95,1,0)
mSet3 <- PlotPCALoading(mSet3, "pca_loading_0_RC", "png", 300, width=NA, 1,2);
mSet3 <- PlotPCABiplot(mSet3, "pca_biplot_0_RC", "png", 300, width=NA, 1,2)
mSet3 <- PlotPCA3DScoreImg(mSet3, "pca_score3d_0_RC", "png", 300, width=NA, 1,2,3, 40)
```