-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
403 lines (369 loc) · 15.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import json
from torch.utils.data import Dataset
import numpy as np
import math
import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
def get_token_sum(g):
sum = 0
for i in g:
sum += i[2]
return sum
def get_vit_num(g):
vit_num = 0
for _ in g:
vit_num += _[1]
return vit_num
def get_sp_groups(pack_group, sp_num):
# padding to sp_num
align_length = int(math.ceil(len(pack_group) * 1.0 / sp_num)) * sp_num
padding_size = align_length - len(pack_group)
if padding_size <= len(pack_group):
pack_group += pack_group[:padding_size]
else:
pack_group += (pack_group * math.ceil(padding_size / len(pack_group)))[:padding_size]
lengths = []
for idx, g in enumerate(pack_group):
temp = 0
for item in g:
temp += item[2]
lengths.append((temp , idx))
lengths = sorted(lengths)
sp_groups = []
target_len = align_length // sp_num
for i in range(target_len):
temp = []
for j in range(sp_num):
g_idx = lengths[i * sp_num + j][1]
temp.append(pack_group[g_idx])
sp_groups.append(temp)
return sp_groups
def get_sp_dist_pad_ratio(sp_groups):
sp_vit_dist_ratio = []
sp_llm_dist_ratio = []
act_token = 0
all_token = 0
pad_token = 0
sp_num = len(sp_groups[0])
for groups in sp_groups:
vit_bs = []
llm_len = []
for g in groups:
vit_bs_sum = 0
llm_len_sum = 0
for item in g:
vit_bs_sum += item[1]
llm_len_sum += item[2]
vit_bs.append(vit_bs_sum)
llm_len.append(llm_len_sum)
max_vit_bs = max(vit_bs)
max_llm_len = max(llm_len)
all_token += (max_llm_len * sp_num)
for item in vit_bs:
waste_vit_ratio = (max_vit_bs - item) / max(max_vit_bs, 1)
sp_vit_dist_ratio.append(waste_vit_ratio)
for item in llm_len:
waste_llm_ratio = (max_llm_len - item) / max(max_llm_len, 1)
pad_token += (max_llm_len - item)
act_token += item
sp_llm_dist_ratio.append(waste_llm_ratio)
ave_sp_vit_dist_ratio = np.mean(sp_vit_dist_ratio)
ave_sp_llm_dist_ratio = np.mean(sp_llm_dist_ratio)
ave_sp_llm_pad_ratio = pad_token / all_token
print(f"ave_sp_vit_dist_ratio: {ave_sp_vit_dist_ratio}")
print(f"ave_sp_llm_dist_ratio: {ave_sp_llm_dist_ratio}")
print(f"ave_sp_llm_pad_ratio: {ave_sp_llm_pad_ratio}")
class BalancedDataset(Dataset):
def __init__(self,
json_files,
max_seq_length=4096,
llm_thresh=4050,
iter_time=10,
vit_packed_length=9,
init=True,
fast_group=False,
vit_packed_thresh=None,
seed=1024,
multi_group=False,
sp_num=1):
super(BalancedDataset, self).__init__()
if vit_packed_thresh is None:
vit_packed_thresh = vit_packed_length
self.multi_group = multi_group
self.token_lengths_list = self.load_wrap_meta(json_files)
self.vit_packed_thresh = self._convert2list(vit_packed_thresh)
self.seed = self._convert2list(seed)
self.vit_packed_length = self._convert2list(vit_packed_length)
self.llm_packed_length = self._convert2list(max_seq_length)
self.llm_thresh = self._convert2list(llm_thresh)
self.iter_time = self._convert2list(iter_time)
self.pack_group = []
self.group_lengths = []
self.sp_num = sp_num
self.sp_groups = []
if init:
for idx, token_lengths in enumerate(self.token_lengths_list):
pack_group = []
if fast_group:
from fast_isf import fast_random_group
pack_group = fast_random_group.fast_process_random_groups(token_lengths,
self.seed[idx],
self.vit_packed_thresh[idx],
self.vit_packed_length[idx],
self.llm_thresh[idx],
self.llm_packed_length[idx],
iter_time=self.iter_time[idx])
else:
pack_group = self.iter_random_groups(token_lengths,
self.seed[idx],
self.vit_packed_thresh[idx],
self.vit_packed_length[idx],
self.llm_thresh[idx],
self.llm_packed_length[idx],
iter_time=self.iter_time[idx])
if self.sp_num > 1:
self.sp_groups.extend(get_sp_groups(pack_group, self.sp_num))
e_pack_group = []
for item in self.sp_groups:
temp = []
for j in item:
temp.extend(j)
e_pack_group.append(temp)
pack_group = e_pack_group
self.group_lengths.append(len(pack_group))
self.pack_group.extend(pack_group)
if self.sp_num > 1:
get_sp_dist_pad_ratio(self.sp_groups)
print(json.dumps(self.collect_packed_info(self.pack_group), indent=4, sort_keys=True))
lengths = []
if self.sp_num > 1:
for sp_g in self.sp_groups:
temp = 0
for g in sp_g:
for item in g:
temp += item[2]
lengths.append(temp)
else:
for g in self.pack_group:
temp = 0
for item in g:
temp += item[2]
lengths.append(temp)
self.lengths = lengths
def _convert2list(self, item):
if self.multi_group:
target_len = len(self.token_lengths_list)
else:
target_len = 1
if not isinstance(item, list):
item = [item] * target_len
return item
def get_display_bin_num(self, llm_num, display_bin_size):
mod, div = llm_num // display_bin_size, llm_num % display_bin_size
if div > 0:
mod += 1
return mod * display_bin_size
def collect_origin_info(self, patch_set):
info = {}
llm_info = {}
all_vit_length = []
all_llm_length = []
act_length = []
for item in patch_set:
vit_num, llm_num = item[1], item[2]
if vit_num not in info:
info[vit_num] = 0
info[vit_num] += 1
llm_num_bin = self.get_display_bin_num(llm_num, 256)
if llm_num_bin not in llm_info:
llm_info[llm_num_bin] = 0
llm_info[llm_num_bin] += 1
all_vit_length.append(vit_num)
all_llm_length.append(llm_num_bin)
act_length.append(llm_num)
info['vit_length_mean'] = np.mean(all_vit_length)
info['vit_length_var'] = np.var(all_vit_length)
info['vit_length_std'] = np.std(all_vit_length)
info['llm_length_mean'] = np.mean(all_llm_length)
info['llm_length_var'] = np.var(all_llm_length)
info['llm_length_std'] = np.std(all_llm_length)
print("origin vit info")
print(json.dumps(info, indent=4))
print("origin llm info")
print(json.dumps(llm_info, indent=4, sort_keys=True))
self.origin_info = info
def load_wrap_meta(self, json_files):
token_lengths_list = []
idx = 0
for wrap_file in json_files:
token_lengths = []
with open(wrap_file) as f:
data_info = json.load(f)
for data_name in data_info.keys():
if "token_lengths" in data_info[data_name]:
token_length_path = data_info[data_name]['token_lengths']
with open(token_length_path, "r") as f:
token_length = json.load(f)
for item in token_length:
token_lengths.append(
[idx, item['vit_num'], item['token_num']])
idx += 1
print(f"{wrap_file} data info")
self.collect_origin_info(token_lengths)
token_lengths_list.append(token_lengths)
if not self.multi_group:
merge_token_lengths = []
for item in token_lengths_list:
merge_token_lengths.extend(item)
print(f"merged data info")
self.collect_origin_info(merge_token_lengths)
token_lengths_list = [merge_token_lengths]
return token_lengths_list
def _random_groups(self, token_lengths, seed=None, vit_max=None, llm_max=None):
"""
tokens_length: [(idx, vit_img_num, llm_token_len)]
"""
rng = np.random.RandomState(seed)
index = list(range(len(token_lengths)))
rng.shuffle(index)
pack_groups = []
vit_token_length_sum, llm_token_length_sum = 0, 0
each_group = []
for idx, sample_id in enumerate(index):
vit_sample_length, llm_sample_length = token_lengths[
sample_id][1], token_lengths[sample_id][2]
if vit_sample_length > vit_max or llm_sample_length > llm_max:
continue
vit_token_length_sum += vit_sample_length
llm_token_length_sum += llm_sample_length
if vit_token_length_sum > vit_max or llm_token_length_sum > llm_max:
pack_groups.append(each_group)
vit_token_length_sum = vit_sample_length
llm_token_length_sum = llm_sample_length
each_group = [token_lengths[sample_id]]
else:
each_group.append(token_lengths[sample_id])
if idx == len(token_lengths) - 1:
if len(each_group) > 0:
pack_groups.append(each_group)
return pack_groups
def iter_random_groups(self,
groups,
seed=None,
vit_thresh=None,
vit_max=None,
llm_thresh=None,
llm_max=None,
iter_time=300):
groups = self._random_groups(groups, seed=seed, vit_max=vit_max, llm_max=llm_max)
if iter_time == 1:
return groups
output = []
for i in range(iter_time - 1):
print(f"iter_random_groups {i} / {iter_time - 1}")
need_process_groups = []
for g in groups:
vit_num = get_vit_num(g)
llm_num = get_token_sum(g)
if vit_num == vit_thresh or llm_num >= llm_thresh:
output.append(g)
else:
need_process_groups.extend(g)
if len(need_process_groups) >= 0:
groups = self._random_groups(need_process_groups, seed + i, vit_max, llm_max)
else:
break
print(i, len(groups), len(need_process_groups))
if len(need_process_groups) > 0:
output.extend(self._random_groups(need_process_groups, seed + i, vit_max, llm_max))
return output
def collect_packed_info(self, packed_groups):
info_dict = {}
info_dict['vit_num_info'] = {}
vit_num_min = 10000000
vit_num_max = 0
llm_num_min = 10000000
llm_num_max = 0
vit_ave_num = 0
llm_ave_num = 0
sample_num = 0
for group in packed_groups:
vit_num = get_vit_num(group)
llm_num = get_token_sum(group)
if vit_num not in info_dict['vit_num_info']:
info_dict['vit_num_info'][vit_num] = 0
info_dict['vit_num_info'][vit_num] += 1
vit_num_min = min(vit_num_min, vit_num)
vit_num_max = max(vit_num_max, vit_num)
llm_num_min = min(llm_num_min, llm_num)
llm_num_max = max(llm_num_max, llm_num)
vit_ave_num += vit_num
llm_ave_num += llm_num
sample_num += len(group)
info_dict['vit_num_min'] = vit_num_min
info_dict['vit_num_max'] = vit_num_max
info_dict['llm_num_max'] = llm_num_max
info_dict['llm_num_min'] = llm_num_min
info_dict['vit_ave_num'] = vit_ave_num / float(len(packed_groups))
info_dict['llm_ave_num'] = llm_ave_num / float(len(packed_groups))
info_dict['sample_num'] = sample_num
info_dict['packed_group_num'] = len(packed_groups)
info_dict['ave_bs'] = sample_num / float(len(packed_groups))
self.info_dict = info_dict
return info_dict
def __getitem__(self, idx):
if self.sp_num > 1:
sp_groups = self.sp_groups[idx]
sp_out = []
for groups in sp_groups:
vit_num = 0
llm_num = 0
for item in groups:
vit_num += item[1]
llm_num += item[2]
sp_out.append((vit_num, llm_num))
return sp_out
else:
groups = self.pack_group[idx]
vit_num = 0
llm_num = 0
for item in groups:
vit_num += item[1]
llm_num += item[2]
return [(vit_num, llm_num)]
def __len__(self):
"""
Returns dataset length
"""
if self.sp_num > 1:
return len(self.sp_groups)
else:
return len(self.pack_group)
class BaseDataset(Dataset):
def __init__(self,
json_files):
super(BaseDataset, self).__init__()
self.load_wrap_meta(json_files)
def load_wrap_meta(self, json_files):
lengths = []
vit_nums = []
for wrap_file in json_files:
with open(wrap_file) as f:
data_info = json.load(f)
for data_name in data_info.keys():
if "token_lengths" in data_info[data_name]:
token_length_path = data_info[data_name]['token_lengths']
with open(token_length_path, "r") as f:
token_length = json.load(f)
for item in token_length:
lengths.append(item['token_num'])
vit_nums.append(item['vit_num'])
self.lengths = lengths
self.vit_nums = vit_nums
def __getitem__(self, idx):
return (self.lengths[idx], self.vit_nums[idx])
def __len__(self):
"""
Returns dataset length
"""
return len(self.lengths)