-
Notifications
You must be signed in to change notification settings - Fork 0
/
KD_train.py
64 lines (51 loc) · 1.92 KB
/
KD_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import time
from options.KD_train_options import KDTrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
import copy
import util.util as util
from PIL import Image
opt = KDTrainOptions().parse()
import torch
import numpy as np
import random
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
torch.backends.cudnn.deterministic = True
# Set Dataloader
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
visualizer = Visualizer(opt)
total_steps = 0
# Set Student Model
student = create_model(opt)
## KD-Student Training
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
student.set_input(data)
student.optimize_parameters()
if total_steps % opt.print_freq == 0:
errors = student.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
losses = student.get_current_errors()
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
student.save('latest')
student.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
student.update_learning_rate()