forked from junyanz/pytorch-CycleGAN-and-pix2pix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualizer.py
269 lines (237 loc) · 12.3 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import os
import sys
import ntpath
import time
from . import util, html
from subprocess import Popen, PIPE
from scipy.misc import imresize
if sys.version_info[0] == 2:
VisdomExceptionBase = Exception
else:
VisdomExceptionBase = ConnectionError
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256, message=""):
"""Save images to the disk.
Parameters:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
webpage.add_hr()
webpage.add_header(name)
if len(message) > 0:
webpage.add_text(message)
ims, txts, links = [], [], []
for label, im_data in visuals.items():
im = util.tensor2im(im_data)
image_name = '%s_%s.png' % (name, label)
save_path = os.path.join(image_dir, image_name)
h, w, _ = im.shape
if aspect_ratio > 1.0:
im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
if aspect_ratio < 1.0:
im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')
util.save_image(im, save_path)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=width)
class Visualizer():
"""This class includes several functions that can display/save images and print/save logging information.
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: connect to a visdom server
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.display_id = opt.display_id
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
self.port = opt.display_port
self.saved = False
if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server>
import visdom
self.ncols = opt.display_ncols
self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env)
if not self.vis.check_connection():
self.create_visdom_connections()
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
self.all_losses = {}
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def create_visdom_connections(self):
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
print('Command: %s' % cmd)
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
def display_current_results(self, visuals, epoch, save_result):
"""Display current results on visdom; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
epoch (int) - - the current epoch
save_result (bool) - - if save the current results to an HTML file
"""
if self.display_id > 0: # show images in the browser using visdom
ncols = self.ncols
if ncols > 0: # show all the images in one visdom panel
ncols = min(ncols, len(visuals))
h, w = next(iter(visuals.values())).shape[:2]
table_css = """<style>
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
</style>""" % (w, h) # create a table css
# create a table of images.
title = self.name
label_html = ''
label_html_row = ''
images = []
idx = 0
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
label_html_row += '<td>%s</td>' % label
images.append(image_numpy.transpose([2, 0, 1]))
idx += 1
if idx % ncols == 0:
label_html += '<tr>%s</tr>' % label_html_row
label_html_row = ''
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
while idx % ncols != 0:
images.append(white_image)
label_html_row += '<td></td>'
idx += 1
if label_html_row != '':
label_html += '<tr>%s</tr>' % label_html_row
try:
self.vis.images(images, nrow=ncols, win=self.display_id + 1,
padding=2, opts=dict(title=title + ' images'))
label_html = '<table>%s</table>' % label_html
self.vis.text(table_css + label_html, win=self.display_id + 2,
opts=dict(title=title + ' labels'))
except VisdomExceptionBase:
self.create_visdom_connections()
else: # show each image in a separate visdom panel;
idx = 1
try:
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
win=self.display_id + idx)
idx += 1
except VisdomExceptionBase:
self.create_visdom_connections()
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims, txts, links = [], [], []
for label, image_numpy in visuals.items():
image_numpy = util.tensor2im(image)
img_path = 'epoch%.3d_%s.png' % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
def plot_current_losses(self, epoch, counter_ratio, losses):
"""display the current losses on visdom display: dictionary of error labels and values
Parameters:
epoch (int) -- current epoch
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
"""
if len(self.all_losses) == 0:
for k, l in losses.items():
if k.startswith('val_'):
self.all_losses.update({k.split('val_')[1]: 0})
self.all_losses.update({k:0})
else:
self.all_losses.update({k:0})
self.all_losses.update({'val_'+k: 0})
for k, l in losses.items():
self.all_losses.update({k: l})
if not hasattr(self, 'plot_data'):
self.plot_data = {'X': [], 'Y': [], 'legend': list(self.all_losses.keys())}
self.plot_data['X'].append(epoch + counter_ratio)
self.plot_data['Y'].append([self.all_losses[k] for k in self.plot_data['legend']])
try:
self.vis.line(
X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
Y=np.array(self.plot_data['Y']),
opts={
'title': self.name + ' loss over time',
'legend': self.plot_data['legend'],
'xlabel': 'epoch',
'ylabel': 'loss'},
win=self.display_id)
except VisdomExceptionBase:
self.create_visdom_connections()
def plot_validation_losses(self, epoch, counter_ratio, losses):
"""display the current losses on visdom display: dictionary of error labels and values
Parameters:
epoch (int) -- current epoch
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
"""
if not hasattr(self, 'plot_data'):
self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
self.plot_data['X'].append(epoch + counter_ratio)
self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
try:
self.vis.line(
X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
Y=np.array(self.plot_data['Y']),
opts={
'title': self.name + ' validation losses over time',
'legend': self.plot_data['legend'],
'xlabel': 'epoch',
'ylabel': 'loss'},
win=self.display_id)
except VisdomExceptionBase:
self.create_visdom_connections()
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message