-
Notifications
You must be signed in to change notification settings - Fork 8
/
test.py
317 lines (255 loc) · 10.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
# To speed things up. This speeds things up
# by avoiding any parallelization of the
# numpy computations, which seem to
# happen bunch with VectorObf envs.
os.environ["OMP_NUM_THREADS"] = "1"
import math
import json
import select
import time
import logging
import threading
from typing import Callable
import gym
import minerl
import abc
import numpy as np
import coloredlogs
# My imports
import torch
from torch_codes.modules import IMPALANetwork
coloredlogs.install(logging.DEBUG)
# All the evaluations will be evaluated on MineRLObtainDiamondVectorObf-v0 environment
MINERL_GYM_ENV = os.getenv('MINERL_GYM_ENV', 'MineRLObtainDiamondVectorObf-v0')
MINERL_MAX_EVALUATION_EPISODES = int(os.getenv('MINERL_MAX_EVALUATION_EPISODES', 5))
# Parallel testing/inference, **you can override** below value based on compute
# requirements, etc to save OOM in this phase.
EVALUATION_THREAD_COUNT = int(os.getenv('EPISODES_EVALUATION_THREAD_COUNT', 2))
class EpisodeDone(Exception):
pass
class Episode(gym.Env):
"""A class for a single episode.
"""
def __init__(self, env):
self.env = env
self.action_space = env.action_space
self.observation_space = env.observation_space
self._done = False
def reset(self):
if not self._done:
return self.env.reset()
def step(self, action):
s, r, d, i = self.env.step(action)
if d:
self._done = True
raise EpisodeDone()
else:
return s, r, d, i
# DO NOT CHANGE THIS CLASS, THIS IS THE BASE CLASS FOR YOUR AGENT.
class MineRLAgentBase(abc.ABC):
"""
To compete in the competition, you are required to implement a
SUBCLASS to this class.
YOUR SUBMISSION WILL FAIL IF:
* Rename this class
* You do not implement a subclass to this class
This class enables the evaluator to run your agent in parallel,
so you should load your model only once in the 'load_agent' method.
"""
@abc.abstractmethod
def load_agent(self):
"""
This method is called at the beginning of the evaluation.
You should load your model and do any preprocessing here.
THIS METHOD IS ONLY CALLED ONCE AT THE BEGINNING OF THE EVALUATION.
DO NOT LOAD YOUR MODEL ANYWHERE ELSE.
"""
raise NotImplementedError()
@abc.abstractmethod
def run_agent_on_episode(self, single_episode_env : Episode):
"""This method runs your agent on a SINGLE episode.
You should just implement the standard environment interaction loop here:
obs = env.reset()
while not done:
env.step(self.agent.act(obs))
...
NOTE: This method will be called in PARALLEL during evaluation.
So, only store state in LOCAL variables.
For example, if using an LSTM, don't store the hidden state in the class
but as a local variable to the method.
Args:
env (gym.Env): The env your agent should interact with.
"""
raise NotImplementedError()
#######################
# YOUR CODE GOES HERE #
#######################
class MineRLMatrixAgent(MineRLAgentBase):
"""
An example random agent.
Note, you MUST subclass MineRLAgentBase.
"""
def load_agent(self):
"""In this example we make a random matrix which
we will use to multiply the state by to produce an action!
This is where you could load a neural network.
"""
# Some helpful constants from the environment.
flat_video_obs_size = 64 * 64 * 3
obs_size = 64
ac_size = 64
self.matrix = np.random.random(size=(ac_size, flat_video_obs_size + obs_size)) * 2 - 1
self.flatten_obs = lambda obs: np.concatenate([obs['pov'].flatten() / 255.0, obs['vector'].flatten()])
self.act = lambda flat_obs: {'vector': np.clip(self.matrix.dot(flat_obs), -1, 1)}
def run_agent_on_episode(self, single_episode_env : Episode):
"""Runs the agent on a SINGLE episode.
Args:
single_episode_env (Episode): The episode on which to run the agent.
"""
obs = single_episode_env.reset()
done = False
while not done:
obs, reward, done, _ = single_episode_env.step(self.act(self.flatten_obs(obs)))
class MineRLRandomAgent(MineRLAgentBase):
"""A random agent"""
def load_agent(self):
pass # Nothing to do, this agent is a random agent.
def run_agent_on_episode(self, single_episode_env: Episode):
obs = single_episode_env.reset()
done = False
while not done:
random_act = single_episode_env.action_space.sample()
single_episode_env.step(random_act)
class MineRLRandomKMeansAgent(MineRLAgentBase):
"""A random agent based on kmeans actions"""
def load_agent(self):
# Fixed parameters
self.centroids = np.load("train/action_centroids.npy")
# Fixed frameskip, courtesy of Guss (from the baseline example)
self.frameskip = 10
def run_agent_on_episode(self, single_episode_env: Episode):
obs = single_episode_env.reset()
done = False
while not done:
random_act = self.centroids[np.random.randint(0, self.centroids.shape[0])]
random_act = {"vector": random_act}
for i in range(self.frameskip):
obs, reward, done, _ = single_episode_env.step(random_act)
if done:
break
class TorchDiscreteActionPolicy(MineRLAgentBase):
"""
Agent using a PyTorch network to predict
discrete actions, which are mapped to action
vectors with given clusters.
"""
def load_agent(self):
# TODO hardcoded settings
self.centroids = np.load("train/action_centroids.npy")
self.model = torch.load("train/trained_model.th")
# Deduce if we want to use LSTM from the model.
# Hidden-state models should have `get_initial_state` function.
self.lstm = hasattr(self.model, "get_initial_state")
# Get maximum number of frameskip and actions
self.max_action = self.model.output_dict["action"]
self.max_frameskip = self.model.output_dict["frameskip"]
self.action_eye = np.eye(self.max_action)
self.frameskip_eye = np.eye(self.max_frameskip)
def run_agent_on_episode(self, single_episode_env: Episode):
# Define step stuff etc here to avoid any problems with
# parallel calls to run_agent_on_episode
previous_action = 0
previous_frameskip = 0
previous_reward = 0
hidden_state = self.model.get_initial_state(batch_size=1)
obs = single_episode_env.reset()
done = False
reward = 0
while not done:
prediction = None
with torch.no_grad():
if self.lstm:
processed_reward = np.array([math.log2(previous_reward + 1)])
vector_obs = np.concatenate(
(
# Mind the ordering here (must match training)
obs["vector"],
self.action_eye[previous_action],
# "1 frameskip" -> [1 0 0 0 ...]
self.frameskip_eye[previous_frameskip - 1],
processed_reward
),
axis=0
)
prediction, hidden_state = self.model(
# TODO move this transposing somewhere else...
# TODO make the whole "float()" stuff unified somehow
# Add batch and time dimensions here
torch.from_numpy(obs["pov"].transpose(2, 0, 1)[None, None]).cuda(),
torch.from_numpy(vector_obs[None, None]).float().cuda(),
hidden_states=hidden_state
)
else:
prediction = self.model(
# TODO move this transposing somewhere else...
# TODO make the whole "float()" stuff unified somehow
torch.from_numpy(obs["pov"].transpose(2, 0, 1)[None]).cuda(),
torch.from_numpy(obs["vector"][None]).float().cuda(),
None
)
action_prediction = prediction["action"][0]
action_prediction = torch.softmax(action_prediction, 0).cpu().detach().numpy()
# Sample action
action = np.random.choice(np.arange(len(action_prediction)), p=action_prediction)
action = int(action)
frameskip = 1
if "frameskip" in prediction.keys():
frameskip_probs = torch.softmax(prediction["frameskip"][0], 0).cpu().detach().numpy()
# Sample frameskip to do
frameskip = np.random.choice(np.arange(len(frameskip_probs)), p=frameskip_probs)
# Add +1, because that is single action
frameskip += 1
previous_action = action
previous_frameskip = frameskip
previous_reward = reward
action_vector = self.centroids[action]
action = {"vector": action_vector}
for i in range(frameskip):
obs, reward, done, _ = single_episode_env.step(action)
if done:
break
#####################################################################
# IMPORTANT: SET THIS VARIABLE WITH THE AGENT CLASS YOU ARE USING
######################################################################
AGENT_TO_TEST = TorchDiscreteActionPolicy
####################
# EVALUATION CODE #
####################
def main():
agent = AGENT_TO_TEST()
assert isinstance(agent, MineRLAgentBase)
agent.load_agent()
assert MINERL_MAX_EVALUATION_EPISODES > 0
assert EVALUATION_THREAD_COUNT > 0
# Create the parallel envs (sequentially to prevent issues!)
envs = [gym.make(MINERL_GYM_ENV) for _ in range(EVALUATION_THREAD_COUNT)]
episodes_per_thread = [MINERL_MAX_EVALUATION_EPISODES // EVALUATION_THREAD_COUNT for _ in range(EVALUATION_THREAD_COUNT)]
episodes_per_thread[-1] += MINERL_MAX_EVALUATION_EPISODES - EVALUATION_THREAD_COUNT *(MINERL_MAX_EVALUATION_EPISODES // EVALUATION_THREAD_COUNT)
# A simple funciton to evaluate on episodes!
def evaluate(i, env):
print("[{}] Starting evaluator.".format(i))
for i in range(episodes_per_thread[i]):
try:
agent.run_agent_on_episode(Episode(env))
except EpisodeDone:
print("[{}] Episode complete".format(i))
pass
evaluator_threads = [threading.Thread(target=evaluate, args=(i, envs[i])) for i in range(EVALUATION_THREAD_COUNT)]
for thread in evaluator_threads:
thread.start()
# wait fo the evaluation to finish
for thread in evaluator_threads:
thread.join()
if __name__ == "__main__":
main()