-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExercise: Machine Learning Competitions
539 lines (539 loc) · 22 KB
/
Exercise: Machine Learning Competitions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
{
"cells": [
{
"cell_type": "markdown",
"id": "ff0ad635",
"metadata": {
"papermill": {
"duration": 0.007088,
"end_time": "2024-06-06T13:49:39.442537",
"exception": false,
"start_time": "2024-06-06T13:49:39.435449",
"status": "completed"
},
"tags": []
},
"source": [
"**This notebook is an exercise in the [Introduction to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning) course. You can reference the tutorial at [this link](https://www.kaggle.com/alexisbcook/machine-learning-competitions).**\n",
"\n",
"---\n"
]
},
{
"cell_type": "markdown",
"id": "52c8bcda",
"metadata": {
"papermill": {
"duration": 0.00432,
"end_time": "2024-06-06T13:49:39.452049",
"exception": false,
"start_time": "2024-06-06T13:49:39.447729",
"status": "completed"
},
"tags": []
},
"source": [
"# Introduction\n",
"\n",
"In this exercise, you will create and submit predictions for a Kaggle competition. You can then improve your model (e.g. by adding features) to apply what you've learned and move up the leaderboard.\n",
"\n",
"Begin by running the code cell below to set up code checking and the filepaths for the dataset."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f2efee4a",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:39.464799Z",
"iopub.status.busy": "2024-06-06T13:49:39.463794Z",
"iopub.status.idle": "2024-06-06T13:49:40.570881Z",
"shell.execute_reply": "2024-06-06T13:49:40.569599Z"
},
"papermill": {
"duration": 1.116074,
"end_time": "2024-06-06T13:49:40.573522",
"exception": false,
"start_time": "2024-06-06T13:49:39.457448",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# Set up code checking\n",
"from learntools.core import binder\n",
"binder.bind(globals())\n",
"from learntools.machine_learning.ex7 import *\n",
"\n",
"# Set up filepaths\n",
"import os\n",
"if not os.path.exists(\"../input/train.csv\"):\n",
" os.symlink(\"../input/home-data-for-ml-course/train.csv\", \"../input/train.csv\") \n",
" os.symlink(\"../input/home-data-for-ml-course/test.csv\", \"../input/test.csv\") "
]
},
{
"cell_type": "markdown",
"id": "da654581",
"metadata": {
"papermill": {
"duration": 0.003689,
"end_time": "2024-06-06T13:49:40.581205",
"exception": false,
"start_time": "2024-06-06T13:49:40.577516",
"status": "completed"
},
"tags": []
},
"source": [
"Here's some of the code you've written so far. Start by running it again."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d4270a8b",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:40.591206Z",
"iopub.status.busy": "2024-06-06T13:49:40.590101Z",
"iopub.status.idle": "2024-06-06T13:49:43.019718Z",
"shell.execute_reply": "2024-06-06T13:49:43.018458Z"
},
"papermill": {
"duration": 2.437192,
"end_time": "2024-06-06T13:49:43.022273",
"exception": false,
"start_time": "2024-06-06T13:49:40.585081",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation MAE for Random Forest Model: 21,857\n"
]
}
],
"source": [
"# Import helpful libraries\n",
"import pandas as pd\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.metrics import mean_absolute_error\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"# Load the data, and separate the target\n",
"iowa_file_path = '../input/train.csv'\n",
"home_data = pd.read_csv(iowa_file_path)\n",
"y = home_data.SalePrice\n",
"\n",
"# Create X (After completing the exercise, you can return to modify this line!)\n",
"features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']\n",
"\n",
"# Select columns corresponding to features, and preview the data\n",
"X = home_data[features]\n",
"X.head()\n",
"\n",
"# Split into validation and training data\n",
"train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)\n",
"\n",
"# Define a random forest model\n",
"rf_model = RandomForestRegressor(random_state=1)\n",
"rf_model.fit(train_X, train_y)\n",
"rf_val_predictions = rf_model.predict(val_X)\n",
"rf_val_mae = mean_absolute_error(rf_val_predictions, val_y)\n",
"\n",
"print(\"Validation MAE for Random Forest Model: {:,.0f}\".format(rf_val_mae))"
]
},
{
"cell_type": "markdown",
"id": "16ca87ad",
"metadata": {
"papermill": {
"duration": 0.003723,
"end_time": "2024-06-06T13:49:43.030157",
"exception": false,
"start_time": "2024-06-06T13:49:43.026434",
"status": "completed"
},
"tags": []
},
"source": [
"# Train a model for the competition\n",
"\n",
"The code cell above trains a Random Forest model on **`train_X`** and **`train_y`**. \n",
"\n",
"Use the code cell below to build a Random Forest model and train it on all of **`X`** and **`y`**."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "94506ff7",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:43.039877Z",
"iopub.status.busy": "2024-06-06T13:49:43.039468Z",
"iopub.status.idle": "2024-06-06T13:49:43.659199Z",
"shell.execute_reply": "2024-06-06T13:49:43.658010Z"
},
"papermill": {
"duration": 0.627387,
"end_time": "2024-06-06T13:49:43.661616",
"exception": false,
"start_time": "2024-06-06T13:49:43.034229",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestRegressor(random_state=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor(random_state=1)</pre></div></div></div></div></div>"
],
"text/plain": [
"RandomForestRegressor(random_state=1)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# To improve accuracy, create a new Random Forest model which you will train on all training data\n",
"rf_model_on_full_data = RandomForestRegressor(random_state=1)\n",
"\n",
"\n",
"# fit rf_model_on_full_data on all data from the training data\n",
"rf_model_on_full_data.fit(X, y)"
]
},
{
"cell_type": "markdown",
"id": "60a96bf2",
"metadata": {
"papermill": {
"duration": 0.003942,
"end_time": "2024-06-06T13:49:43.669824",
"exception": false,
"start_time": "2024-06-06T13:49:43.665882",
"status": "completed"
},
"tags": []
},
"source": [
"Now, read the file of \"test\" data, and apply your model to make predictions."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c0f49e69",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:43.679976Z",
"iopub.status.busy": "2024-06-06T13:49:43.679589Z",
"iopub.status.idle": "2024-06-06T13:49:43.745435Z",
"shell.execute_reply": "2024-06-06T13:49:43.744181Z"
},
"papermill": {
"duration": 0.074049,
"end_time": "2024-06-06T13:49:43.748096",
"exception": false,
"start_time": "2024-06-06T13:49:43.674047",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# path to file you will use for predictions\n",
"test_data_path = '../input/test.csv'\n",
"\n",
"# read test data file using pandas\n",
"test_data = pd.read_csv(test_data_path)\n",
"\n",
"# create test_X which comes from test_data but includes only the columns you used for prediction.\n",
"# The list of columns is stored in a variable called features\n",
"test_X = test_data[features]\n",
"\n",
"# make predictions which we will submit. \n",
"test_preds = rf_model_on_full_data.predict(test_X)"
]
},
{
"cell_type": "markdown",
"id": "7652c89e",
"metadata": {
"papermill": {
"duration": 0.003934,
"end_time": "2024-06-06T13:49:43.756374",
"exception": false,
"start_time": "2024-06-06T13:49:43.752440",
"status": "completed"
},
"tags": []
},
"source": [
"Before submitting, run a check to make sure your `test_preds` have the right format."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b1a22501",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:43.767300Z",
"iopub.status.busy": "2024-06-06T13:49:43.765889Z",
"iopub.status.idle": "2024-06-06T13:49:43.775557Z",
"shell.execute_reply": "2024-06-06T13:49:43.774474Z"
},
"papermill": {
"duration": 0.017134,
"end_time": "2024-06-06T13:49:43.777645",
"exception": false,
"start_time": "2024-06-06T13:49:43.760511",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"application/javascript": [
"parent.postMessage({\"jupyterEvent\": \"custom.exercise_interaction\", \"data\": {\"outcomeType\": 1, \"valueTowardsCompletion\": 1.0, \"interactionType\": 1, \"questionType\": 2, \"questionId\": \"1_CheckSubmittablePreds\", \"learnToolsVersion\": \"0.3.4\", \"failureMessage\": \"\", \"exceptionClass\": \"\", \"trace\": \"\"}}, \"*\")"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"<span style=\"color:#33cc33\">Correct</span>"
],
"text/plain": [
"Correct"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Check your answer (To get credit for completing the exercise, you must get a \"Correct\" result!)\n",
"step_1.check()\n",
"# step_1.solution()"
]
},
{
"cell_type": "markdown",
"id": "9ba0bfd6",
"metadata": {
"papermill": {
"duration": 0.004289,
"end_time": "2024-06-06T13:49:43.786626",
"exception": false,
"start_time": "2024-06-06T13:49:43.782337",
"status": "completed"
},
"tags": []
},
"source": [
"# Generate a submission\n",
"\n",
"Run the code cell below to generate a CSV file with your predictions that you can use to submit to the competition."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "78271ccc",
"metadata": {
"execution": {
"iopub.execute_input": "2024-06-06T13:49:43.797607Z",
"iopub.status.busy": "2024-06-06T13:49:43.797242Z",
"iopub.status.idle": "2024-06-06T13:49:43.808956Z",
"shell.execute_reply": "2024-06-06T13:49:43.807945Z"
},
"papermill": {
"duration": 0.020045,
"end_time": "2024-06-06T13:49:43.811533",
"exception": false,
"start_time": "2024-06-06T13:49:43.791488",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# Run the code to save predictions in the format used for competition scoring\n",
"\n",
"output = pd.DataFrame({'Id': test_data.Id,\n",
" 'SalePrice': test_preds})\n",
"output.to_csv('submission.csv', index=False)"
]
},
{
"cell_type": "markdown",
"id": "490a4faa",
"metadata": {
"papermill": {
"duration": 0.004605,
"end_time": "2024-06-06T13:49:43.822231",
"exception": false,
"start_time": "2024-06-06T13:49:43.817626",
"status": "completed"
},
"tags": []
},
"source": [
"# Submit to the competition\n",
"\n",
"To test your results, you'll need to join the competition (if you haven't already). So open a new window by clicking on **[this link](https://www.kaggle.com/c/home-data-for-ml-course)**. Then click on the **Join Competition** button.\n",
"\n",
"![join competition image](https://storage.googleapis.com/kaggle-media/learn/images/axBzctl.png)\n",
"\n",
"Next, follow the instructions below:\n",
"1. Begin by clicking on the **Save Version** button in the top right corner of the window. This will generate a pop-up window. \n",
"2. Ensure that the **Save and Run All** option is selected, and then click on the **Save** button.\n",
"3. This generates a window in the bottom left corner of the notebook. After it has finished running, click on the number to the right of the **Save Version** button. This pulls up a list of versions on the right of the screen. Click on the ellipsis **(...)** to the right of the most recent version, and select **Open in Viewer**. This brings you into view mode of the same page. You will need to scroll down to get back to these instructions.\n",
"4. Click on the **Data** tab near the top of the screen. Then, click on the file you would like to submit, and click on the **Submit** button to submit your results to the leaderboard.\n",
"\n",
"You have now successfully submitted to the competition!\n",
"\n",
"If you want to keep working to improve your performance, select the **Edit** button in the top right of the screen. Then you can change your code and repeat the process. There's a lot of room to improve, and you will climb up the leaderboard as you work.\n",
"\n",
"\n",
"# Continue Your Progress\n",
"There are many ways to improve your model, and **experimenting is a great way to learn at this point.**\n",
"\n",
"The best way to improve your model is to add features. To add more features to the data, revisit the first code cell, and change this line of code to include more column names:\n",
"```python\n",
"features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']\n",
"```\n",
"\n",
"Some features will cause errors because of issues like missing values or non-numeric data types. Here is a complete list of potential columns that you might like to use, and that won't throw errors:\n",
"- 'MSSubClass'\n",
"- 'LotArea'\n",
"- 'OverallQual' \n",
"- 'OverallCond' \n",
"- 'YearBuilt'\n",
"- 'YearRemodAdd' \n",
"- '1stFlrSF'\n",
"- '2ndFlrSF' \n",
"- 'LowQualFinSF' \n",
"- 'GrLivArea'\n",
"- 'FullBath'\n",
"- 'HalfBath'\n",
"- 'BedroomAbvGr' \n",
"- 'KitchenAbvGr' \n",
"- 'TotRmsAbvGrd' \n",
"- 'Fireplaces' \n",
"- 'WoodDeckSF' \n",
"- 'OpenPorchSF'\n",
"- 'EnclosedPorch' \n",
"- '3SsnPorch' \n",
"- 'ScreenPorch' \n",
"- 'PoolArea' \n",
"- 'MiscVal' \n",
"- 'MoSold' \n",
"- 'YrSold'\n",
"\n",
"Look at the list of columns and think about what might affect home prices. To learn more about each of these features, take a look at the data description on the **[competition page](https://www.kaggle.com/c/home-data-for-ml-course/data)**.\n",
"\n",
"After updating the code cell above that defines the features, re-run all of the code cells to evaluate the model and generate a new submission file. \n",
"\n",
"\n",
"# What's next?\n",
"\n",
"As mentioned above, some of the features will throw an error if you try to use them to train your model. The **[Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)** course will teach you how to handle these types of features. You will also learn to use **xgboost**, a technique giving even better accuracy than Random Forest.\n",
"\n",
"The **[Pandas](https://kaggle.com/Learn/Pandas)** course will give you the data manipulation skills to quickly go from conceptual idea to implementation in your data science projects. \n",
"\n",
"You are also ready for the **[Deep Learning](https://kaggle.com/Learn/intro-to-Deep-Learning)** course, where you will build models with better-than-human level performance at computer vision tasks."
]
},
{
"cell_type": "markdown",
"id": "28aa6135",
"metadata": {
"papermill": {
"duration": 0.004309,
"end_time": "2024-06-06T13:49:43.831215",
"exception": false,
"start_time": "2024-06-06T13:49:43.826906",
"status": "completed"
},
"tags": []
},
"source": [
"---\n",
"\n",
"\n",
"\n",
"\n",
"*Have questions or comments? Visit the [course discussion forum](https://www.kaggle.com/learn/intro-to-machine-learning/discussion) to chat with other learners.*"
]
}
],
"metadata": {
"kaggle": {
"accelerator": "none",
"dataSources": [
{
"databundleVersionId": 111096,
"sourceId": 10211,
"sourceType": "competition"
}
],
"isGpuEnabled": false,
"isInternetEnabled": false,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"papermill": {
"default_parameters": {},
"duration": 7.987168,
"end_time": "2024-06-06T13:49:44.456945",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2024-06-06T13:49:36.469777",
"version": "2.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}