Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reproducing results #4

Open
faderani opened this issue Oct 3, 2021 · 1 comment
Open

Reproducing results #4

faderani opened this issue Oct 3, 2021 · 1 comment

Comments

@faderani
Copy link

faderani commented Oct 3, 2021

Hi and thanks for the great work.

I have difficulties reproducing the result reported on the EGTEA Gaze+ dataset. I'm using your provided trained weights and following the guide on code usage I get this number on different splits:

test_split1.txt : acc: 36.85, 49.21 / 0:22:27
test_split2.txt :acc: 47.65, 57.44 / 0:15:22
test_split3.txt :acc: 50.41, 60.14 / 0:15:07

How should I reproduce 69.73%?

I'm using parameters as default:

parser.add_argument('--mode', default='test', help='train | test')
parser.add_argument('--crop', type=int, default=224, help='for spatial cropping')
parser.add_argument('--trange', type=int, default=24, help='temporal range')
parser.add_argument('--stride', type=int, default=8, help='pooling stride for gaze prediction')
parser.add_argument('--b', type=int, default=1, help='batch size')
parser.add_argument('--wd', type=float, default=4e-5, help='weight decay')
parser.add_argument('--it1', type=int, default=8000, help='first decay point')
parser.add_argument('--it2', type=int, default=15000, help='second decay point')
parser.add_argument('--iters', type=int, default=18000, help='number of max iterations for training')
parser.add_argument('--lr', type=float, default=0.032, help='learning rate')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--eps', type=float, default=1000, help='epsilon for the gradient estimator')
parser.add_argument('--anneal', type=float, default=1e-3, help='anneal rate for epsilon')

parser.add_argument('--datapath', default='dataset', help='path to dataset')
parser.add_argument('--datasplit', type=int, default=1, help='data split for the cross validation')
parser.add_argument('--weight', default='weights/i3d_iga_best1_base.pt', help='path to the weight file for the base network')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--test_sparse', action='store_true', help='whether to test sparsely for fast evaluation')
@kylemin
Copy link
Member

kylemin commented Oct 8, 2021

I think that the problem is the optical flow.
For the optical flow frames, I used this repository: link.
If you build it, libpydenseflow.so will be created. Then, you can use this file to extract the flow frames.

I hope it helps.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants