-
Notifications
You must be signed in to change notification settings - Fork 0
/
detr_loss.py
509 lines (461 loc) · 20.6 KB
/
detr_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from .iou_loss import GIoULoss
from .keypoint_loss import OKSLoss
from ..transformers import bbox_cxcywh_to_xyxy, sigmoid_focal_loss
__all__ = ['DETRLoss', 'DINOLoss', 'GroupPoseLoss']
@register
class DETRLoss(nn.Layer):
__shared__ = ['num_classes', 'use_focal_loss']
__inject__ = ['matcher']
def __init__(self,
num_classes=80,
matcher='HungarianMatcher',
loss_coeff={
'class': 1,
'bbox': 5,
'giou': 2,
'no_object': 0.1,
'mask': 1,
'dice': 1
},
aux_loss=True,
use_focal_loss=False):
r"""
Args:
num_classes (int): The number of classes.
matcher (HungarianMatcher): It computes an assignment between the targets
and the predictions of the network.
loss_coeff (dict): The coefficient of loss.
aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
use_focal_loss (bool): Use focal loss or not.
"""
super(DETRLoss, self).__init__()
self.num_classes = num_classes
self.matcher = matcher
self.loss_coeff = loss_coeff
self.aux_loss = aux_loss
self.use_focal_loss = use_focal_loss
if not self.use_focal_loss:
self.loss_coeff['class'] = paddle.full([num_classes + 1],
loss_coeff['class'])
self.loss_coeff['class'][-1] = loss_coeff['no_object']
self.giou_loss = GIoULoss()
def _get_loss_class(self,
logits,
gt_class,
match_indices,
bg_index,
num_gts,
postfix=""):
# logits: [b, query, num_classes], gt_class: list[[n, 1]]
name_class = "loss_class" + postfix
if logits is None:
return {name_class: paddle.zeros([1])}
target_label = paddle.full(logits.shape[:2], bg_index, dtype='int64')
bs, num_query_objects = target_label.shape
if sum(len(a) for a in gt_class) > 0:
index, updates = self._get_index_updates(num_query_objects,
gt_class, match_indices)
target_label = paddle.scatter(
target_label.reshape([-1, 1]), index, updates.astype('int64'))
target_label = target_label.reshape([bs, num_query_objects])
if self.use_focal_loss:
target_label = F.one_hot(target_label,
self.num_classes + 1)[..., :-1]
return {
name_class: self.loss_coeff['class'] * sigmoid_focal_loss(
logits, target_label, num_gts / num_query_objects)
if self.use_focal_loss else F.cross_entropy(
logits, target_label, weight=self.loss_coeff['class'])
}
def _get_loss_bbox(self, boxes, gt_bbox, match_indices, num_gts,
postfix=""):
# boxes: [b, query, 4], gt_bbox: list[[n, 4]]
name_bbox = "loss_bbox" + postfix
name_giou = "loss_giou" + postfix
if boxes is None:
return {name_bbox: paddle.zeros([1]), name_giou: paddle.zeros([1])}
loss = dict()
if sum(len(a) for a in gt_bbox) == 0:
loss[name_bbox] = paddle.to_tensor([0.])
loss[name_giou] = paddle.to_tensor([0.])
return loss
src_bbox, target_bbox = self._get_src_target_assign(boxes, gt_bbox,
match_indices)
loss[name_bbox] = self.loss_coeff['bbox'] * F.l1_loss(
src_bbox, target_bbox, reduction='sum') / num_gts
loss[name_giou] = self.giou_loss(
bbox_cxcywh_to_xyxy(src_bbox), bbox_cxcywh_to_xyxy(target_bbox))
loss[name_giou] = loss[name_giou].sum() / num_gts
loss[name_giou] = self.loss_coeff['giou'] * loss[name_giou]
return loss
def _get_loss_mask(self, masks, gt_mask, match_indices, num_gts,
postfix=""):
# masks: [b, query, h, w], gt_mask: list[[n, H, W]]
name_mask = "loss_mask" + postfix
name_dice = "loss_dice" + postfix
if masks is None:
return {name_mask: paddle.zeros([1]), name_dice: paddle.zeros([1])}
loss = dict()
if sum(len(a) for a in gt_mask) == 0:
loss[name_mask] = paddle.to_tensor([0.])
loss[name_dice] = paddle.to_tensor([0.])
return loss
src_masks, target_masks = self._get_src_target_assign(masks, gt_mask,
match_indices)
src_masks = F.interpolate(
src_masks.unsqueeze(0),
size=target_masks.shape[-2:],
mode="bilinear")[0]
loss[name_mask] = self.loss_coeff['mask'] * F.sigmoid_focal_loss(
src_masks,
target_masks,
paddle.to_tensor(
[num_gts], dtype='float32'))
loss[name_dice] = self.loss_coeff['dice'] * self._dice_loss(
src_masks, target_masks, num_gts)
return loss
def _dice_loss(self, inputs, targets, num_gts):
inputs = F.sigmoid(inputs)
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_gts
def _get_loss_aux(self,
boxes,
logits,
gt_bbox,
gt_class,
bg_index,
num_gts,
dn_match_indices=None,
postfix=""):
if boxes is None or logits is None:
return {
"loss_class_aux" + postfix: paddle.paddle.zeros([1]),
"loss_bbox_aux" + postfix: paddle.paddle.zeros([1]),
"loss_giou_aux" + postfix: paddle.paddle.zeros([1])
}
loss_class = []
loss_bbox = []
loss_giou = []
for aux_boxes, aux_logits in zip(boxes, logits):
if dn_match_indices is None:
match_indices = self.matcher(aux_boxes, aux_logits, gt_bbox,
gt_class)
else:
match_indices = dn_match_indices
loss_class.append(
self._get_loss_class(aux_logits, gt_class, match_indices,
bg_index, num_gts, postfix)['loss_class' +
postfix])
loss_ = self._get_loss_bbox(aux_boxes, gt_bbox, match_indices,
num_gts, postfix)
loss_bbox.append(loss_['loss_bbox' + postfix])
loss_giou.append(loss_['loss_giou' + postfix])
loss = {
"loss_class_aux" + postfix: paddle.add_n(loss_class),
"loss_bbox_aux" + postfix: paddle.add_n(loss_bbox),
"loss_giou_aux" + postfix: paddle.add_n(loss_giou)
}
return loss
def _get_index_updates(self, num_query_objects, target, match_indices):
batch_idx = paddle.concat([
paddle.full_like(src, i) for i, (src, _) in enumerate(match_indices)
])
src_idx = paddle.concat([src for (src, _) in match_indices])
src_idx += (batch_idx * num_query_objects)
target_assign = paddle.concat([
paddle.gather(
t, dst, axis=0) for t, (_, dst) in zip(target, match_indices)
])
return src_idx, target_assign
def _get_src_target_assign(self, src, target, match_indices):
src_assign = paddle.concat([
paddle.gather(
t, I, axis=0) if len(I) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (I, _) in zip(src, match_indices)
])
target_assign = paddle.concat([
paddle.gather(
t, J, axis=0) if len(J) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (_, J) in zip(target, match_indices)
])
return src_assign, target_assign
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
**kwargs):
r"""
Args:
boxes (Tensor|None): [l, b, query, 4]
logits (Tensor|None): [l, b, query, num_classes]
gt_bbox (List(Tensor)): list[[n, 4]]
gt_class (List(Tensor)): list[[n, 1]]
masks (Tensor, optional): [b, query, h, w]
gt_mask (List(Tensor), optional): list[[n, H, W]]
postfix (str): postfix of loss name
"""
dn_match_indices = kwargs.get("dn_match_indices", None)
if dn_match_indices is None and (boxes is not None and
logits is not None):
match_indices = self.matcher(boxes[-1].detach(),
logits[-1].detach(), gt_bbox, gt_class)
else:
match_indices = dn_match_indices
num_gts = sum(len(a) for a in gt_bbox)
num_gts = paddle.to_tensor([num_gts], dtype="float32")
if paddle.distributed.get_world_size() > 1:
paddle.distributed.all_reduce(num_gts)
num_gts /= paddle.distributed.get_world_size()
num_gts = paddle.clip(num_gts, min=1.) * kwargs.get("dn_num_group", 1.)
total_loss = dict()
total_loss.update(
self._get_loss_class(logits[
-1] if logits is not None else None, gt_class, match_indices,
self.num_classes, num_gts, postfix))
total_loss.update(
self._get_loss_bbox(boxes[-1] if boxes is not None else None,
gt_bbox, match_indices, num_gts, postfix))
if masks is not None and gt_mask is not None:
total_loss.update(
self._get_loss_mask(masks if masks is not None else None,
gt_mask, match_indices, num_gts, postfix))
if self.aux_loss:
total_loss.update(
self._get_loss_aux(
boxes[:-1] if boxes is not None else None, logits[:-1]
if logits is not None else None, gt_bbox, gt_class,
self.num_classes, num_gts, dn_match_indices, postfix))
return total_loss
@register
class DINOLoss(DETRLoss):
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
dn_out_bboxes=None,
dn_out_logits=None,
dn_meta=None,
**kwargs):
total_loss = super(DINOLoss, self).forward(boxes, logits, gt_bbox,
gt_class)
if dn_meta is not None:
dn_positive_idx, dn_num_group = \
dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
assert len(gt_class) == len(dn_positive_idx)
# denoising match indices
dn_match_indices = []
for i in range(len(gt_class)):
num_gt = len(gt_class[i])
if num_gt > 0:
gt_idx = paddle.arange(end=num_gt, dtype="int64")
gt_idx = gt_idx.unsqueeze(0).tile(
[dn_num_group, 1]).flatten()
assert len(gt_idx) == len(dn_positive_idx[i])
dn_match_indices.append((dn_positive_idx[i], gt_idx))
else:
dn_match_indices.append((paddle.zeros(
[0], dtype="int64"), paddle.zeros(
[0], dtype="int64")))
else:
dn_match_indices, dn_num_group = None, 1.
# compute denoising training loss
dn_loss = super(DINOLoss, self).forward(
dn_out_bboxes,
dn_out_logits,
gt_bbox,
gt_class,
postfix="_dn",
dn_match_indices=dn_match_indices,
dn_num_group=dn_num_group)
total_loss.update(dn_loss)
return total_loss
@register
class GroupPoseLoss(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['matcher']
def __init__(self,
num_classes=2,
num_body_points=17,
matcher='HungarianKeypointMatcher',
loss_coeff={
'class': 2.0,
'keypoint': 10.0,
'oks': 4.0
},
aux_loss=True,
alpha=0.25,
gamma=2.0):
super(GroupPoseLoss, self).__init__()
self.num_classes = num_classes
self.num_body_points = num_body_points
self.matcher = matcher
self.loss_coeff = loss_coeff
self.aux_loss = aux_loss
self.alpha = alpha
self.gamma = gamma
self.oks_loss = OKSLoss(linear=True,
num_keypoints=num_body_points,
eps=1e-6,
reduction='none',
loss_weight=1.0)
def _get_src_target_assign(self, src, tgt_keypoint, tgt_area, match_indices):
src_assign = paddle.concat([
paddle.gather(
t, I, axis=0) if len(I) > 0 else paddle.zeros([0] + t.shape[-2:])
for t, (I, _) in zip(src, match_indices)
])
target_assign = paddle.concat([
paddle.gather(
t, J, axis=0) if len(J) > 0 else paddle.zeros([0] + t.shape[-2:])
for t, (_, J) in zip(tgt_keypoint, match_indices)
])
area_assign = paddle.concat([
paddle.gather(
t, J, axis=0) if len(J) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (_, J) in zip(tgt_area, match_indices)
])
return src_assign, target_assign, area_assign
def _get_index_updates(self, num_query_objects, target, match_indices):
batch_idx = paddle.concat([
paddle.full_like(src, i) for i, (src, _) in enumerate(match_indices)
])
src_idx = paddle.concat([src for (src, _) in match_indices])
src_idx += (batch_idx * num_query_objects)
target_assign = paddle.concat([
paddle.gather(
t, dst, axis=0) for t, (_, dst) in zip(target, match_indices)
])
return src_idx, target_assign
def _get_loss_aux(self,
keypoints,
logits,
targets,
num_gts,
postfix=""):
if keypoints is None or logits is None:
return {
"loss_class_aux" + postfix: paddle.paddle.zeros([1]),
"loss_keypoint_aux" + postfix: paddle.paddle.zeros([1]),
"loss_oks_aux" + postfix: paddle.paddle.zeros([1])
}
loss_class = []
loss_keypoint = []
loss_oks = []
for aux_keypoints, aux_logits in zip(keypoints, logits):
match_indices = self.matcher(aux_keypoints.detach(), aux_logits.detach(), targets)
loss_class.append(
self._get_loss_class(aux_logits, targets, match_indices, num_gts)['loss_class'])
loss_ = self._get_loss_keypoint(aux_keypoints, targets, match_indices, num_gts)
loss_keypoint.append(loss_['loss_keypoint'])
loss_oks.append(loss_['loss_oks'])
loss = {
"loss_class_aux" + postfix: paddle.add_n(loss_class),
"loss_keypoint_aux" + postfix: paddle.add_n(loss_keypoint),
"loss_oks_aux" + postfix: paddle.add_n(loss_oks)
}
return loss
def _get_loss_class(self,
logits,
targets,
match_indices,
num_gts,
postfix=""):
# logits: [b, query, num_classes], gt_class: list[[n, 1]]
name_class = "loss_class" + postfix
if logits is None:
return {name_class: paddle.zeros([1])}
target_label = paddle.full(logits.shape[:2], self.num_classes, dtype='int64')
bs, num_query_objects = target_label.shape
if sum(len(v) for v in targets["gt_joints"]) > 0:
index, updates = self._get_index_updates(num_query_objects,
targets["gt_class"], match_indices)
target_label = paddle.scatter(
target_label.reshape([-1, 1]), index, updates.astype('int64'))
target_label = target_label.reshape([bs, num_query_objects])
target_label = F.one_hot(target_label, self.num_classes + 1)[..., :-1]
return {
name_class: self.loss_coeff['class'] * sigmoid_focal_loss(
logits, target_label, num_gts / num_query_objects, alpha=self.alpha, gamma=self.gamma)
}
def _get_loss_keypoint(self, keypoints, targets, match_indices, num_gts,
postfix=""):
# keypoint loss: L1 & OKS
assert "gt_joints" in targets
name_keypoint = "loss_keypoint" + postfix
name_oks = "loss_oks" + postfix
if keypoints is None:
return {name_keypoint: paddle.zeros([1]), name_oks: paddle.zeros([1])}
loss = dict()
if sum(len(v) for v in targets["gt_joints"]) == 0:
loss[name_keypoint] = paddle.to_tensor([0.]) * keypoints.sum() * 0.
loss[name_oks] = paddle.to_tensor([0.]) * keypoints.sum() * 0.
return loss
src_keypoint, tgt_keypoint, tgt_area = self._get_src_target_assign(keypoints, targets["gt_joints"], targets["gt_areas"], match_indices)
vis_keypoint = tgt_keypoint[..., -1].clip(max=1.0)
tgt_keypoint = tgt_keypoint[..., :2]
# print(src_keypoint)
# print(tgt_keypoint)
for x, y in zip(src_keypoint, tgt_keypoint):
print(x, y)
exit()
loss[name_keypoint] = self.loss_coeff['keypoint'] * F.l1_loss(
src_keypoint.flatten(-2), tgt_keypoint.flatten(-2), reduction='none')
loss[name_keypoint] = loss[name_keypoint] * vis_keypoint.repeat_interleave(2, axis=-1)
loss[name_keypoint] = loss[name_keypoint].sum() / num_gts
loss[name_oks] = self.loss_coeff['oks'] * self.oks_loss(src_keypoint.flatten(-2), tgt_keypoint.flatten(-2), vis_keypoint, tgt_area)
loss[name_oks] = loss[name_oks].sum() / num_gts
return loss
def forward(self,
keypoints,
logits,
targets,
**kwargs):
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_gts = sum(len(v) for v in targets["gt_joints"])
num_gts = paddle.to_tensor([num_gts], dtype="float32")
if paddle.distributed.get_world_size() > 1:
paddle.distributed.all_reduce(num_gts)
num_gts /= paddle.distributed.get_world_size()
num_gts = paddle.clip(num_gts, min=1.)
# loss for final layer
match_indices = self.matcher(keypoints[-1].detach(), logits[-1].detach(), targets)
total_loss = dict()
total_loss.update(self._get_loss_class(logits[-1], targets, match_indices, num_gts))
total_loss.update(self._get_loss_keypoint(keypoints[-1], targets, match_indices, num_gts))
exit()
if self.aux_loss:
total_loss.update(
self._get_loss_aux(keypoints[:-1], logits[:-1], targets, num_gts))
return total_loss