-
Notifications
You must be signed in to change notification settings - Fork 0
/
picodet_s_416_coco_npu.yml
106 lines (94 loc) · 2.29 KB
/
picodet_s_416_coco_npu.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/picodet_v2.yml',
'_base_/optimizer_300e.yml',
]
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
weights: output/picodet_s_416_coco/best_model
find_unused_parameters: True
keep_best_weight: True
use_ema: True
epoch: 300
snapshot_epoch: 10
PicoDet:
backbone: LCNet
neck: CSPPAN
head: PicoHeadV2
LCNet:
scale: 0.75
feature_maps: [3, 4, 5]
act: relu6
CSPPAN:
out_channels: 96
use_depthwise: True
num_csp_blocks: 1
num_features: 4
act: relu6
PicoHeadV2:
conv_feat:
name: PicoFeat
feat_in: 96
feat_out: 96
num_convs: 4
num_fpn_stride: 4
norm_type: bn
share_cls_reg: True
use_se: True
act: relu6
feat_in_chan: 96
act: relu6
LearningRate:
base_lr: 0.2
schedulers:
- !CosineDecay
max_epochs: 300
min_lr_ratio: 0.08
last_plateau_epochs: 30
- !ExpWarmup
epochs: 2
worker_num: 6
eval_height: &eval_height 416
eval_width: &eval_width 416
eval_size: &eval_size [*eval_height, *eval_width]
TrainReader:
sample_transforms:
- Decode: {}
- Mosaic:
prob: 0.6
input_dim: [640, 640]
degrees: [-10, 10]
scale: [0.1, 2.0]
shear: [-2, 2]
translate: [-0.1, 0.1]
enable_mixup: True
- AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30}
- RandomFlip: {prob: 0.5}
batch_transforms:
- BatchRandomResize: {target_size: [320, 352, 384, 416, 448, 480, 512], random_size: True, random_interp: True, keep_ratio: False}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
- PadGT: {}
batch_size: 40
shuffle: true
drop_last: true
mosaic_epoch: 180
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: *eval_size, keep_ratio: False}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 8
shuffle: false
TestReader:
inputs_def:
image_shape: [1, 3, *eval_height, *eval_width]
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: *eval_size, keep_ratio: False}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1