-
Notifications
You must be signed in to change notification settings - Fork 63
/
setup.py
143 lines (117 loc) · 4.92 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import glob
import os
import shutil
from os import path
from setuptools import find_packages, setup
from typing import List
import torch
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 3], "Requires PyTorch >= 1.3"
def get_version():
init_py_path = path.join(path.abspath(path.dirname(__file__)), "cvpods", "__init__.py")
init_py = open(init_py_path, "r").readlines()
version_line = [l.strip() for l in init_py if l.startswith("__version__")][0]
version = version_line.split("=")[-1].strip().strip("'\"")
# The following is used to build release packages.
# Users should never use it.
suffix = os.getenv("D2_VERSION_SUFFIX", "")
version = version + suffix
if os.getenv("BUILD_NIGHTLY", "0") == "1":
from datetime import datetime
date_str = datetime.today().strftime("%y%m%d")
version = version + ".dev" + date_str
new_init_py = [l for l in init_py if not l.startswith("__version__")]
new_init_py.append('__version__ = "{}"\n'.format(version))
with open(init_py_path, "w") as f:
f.write("".join(new_init_py))
return version
def get_extensions():
this_dir = path.dirname(path.abspath(__file__))
extensions_dir = path.join(this_dir, "cvpods", "layers", "csrc")
main_source = path.join(extensions_dir, "vision.cpp")
sources = glob.glob(path.join(extensions_dir, "**", "*.cpp"))
source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu")) + glob.glob(
path.join(extensions_dir, "*.cu")
)
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": []}
define_macros = []
if (
torch.cuda.is_available() and CUDA_HOME is not None and os.path.isdir(CUDA_HOME)
) or os.getenv("FORCE_CUDA", "0") == "1":
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
# It's better if pytorch can do this by default ..
CC = os.environ.get("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
include_dirs = [extensions_dir]
ext_modules = [
extension(
"cvpods._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
def get_model_zoo_configs() -> List[str]:
"""
Return a list of configs to include in package for model zoo. Copy over these configs inside
cvpods/model_zoo.
"""
# Use absolute paths while symlinking.
source_configs_dir = path.join(path.dirname(path.realpath(__file__)), "configs")
destination = path.join(
path.dirname(path.realpath(__file__)), "cvpods", "model_zoo", "configs"
)
# Symlink the config directory inside package to have a cleaner pip install.
# Remove stale symlink/directory from a previous build.
if path.exists(source_configs_dir):
if path.islink(destination):
os.unlink(destination)
elif path.isdir(destination):
shutil.rmtree(destination)
if not path.exists(destination):
try:
os.symlink(source_configs_dir, destination)
except OSError:
# Fall back to copying if symlink fails: ex. on Windows.
shutil.copytree(source_configs_dir, destination)
config_paths = glob.glob("configs/**/*.yaml", recursive=True)
return config_paths
cur_dir = os.getcwd()
with open("tools/pods_train", "w") as cvpack_train:
head = (f"#!/bin/bash\n\nexport OMP_NUM_THREADS=1\n\n")
cvpack_train.write(
head + f"python3 {os.path.join(cur_dir, 'tools', 'train_net.py')} $@")
with open("tools/pods_test", "w") as cvpods_test:
cvpods_test.write(
head + f"python3 {os.path.join(cur_dir, 'tools', 'test_net.py')} $@")
setup(
name="cvpods",
version=get_version(),
author="BaseDetection@MegviiResearch",
url="https://github.com/Megvii-BaseDetection/BorderDet",
description=("cvpods is the research platform of the BaseDetection team, "
"it is designed for many computer vision tasks, including classification, "
"self-supervised learning, detection, segmentation and keypoints. "
"cvpods is developed based on detectron2."),
packages=find_packages(exclude=("tests")),
python_requires=">=3.6",
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
scripts=["tools/pods_train", "tools/pods_test"],
)