forked from gzhanuo/hybrid-deep-code-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
289 lines (259 loc) · 12.3 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import sys
import traceback
import numpy as np
import argparse
import threading
import codecs
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format="%(message)s")
from tensorboardX import SummaryWriter # install tensorboardX (pip install tensorboardX) before importing this package
import torch
import json
from flask import Flask, request, jsonify
from utils import normalize, similarity, sent2indexes
from data_loader import load_dict, load_vecs
import models, configs
import os
import sys
import random
import time
from datetime import datetime
import numpy as np
import math
import torch.nn.functional as F
import argparse
random.seed(42)
from tqdm import tqdm
import dataset.my_ast
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format="%(message)s")
from tensorboardX import SummaryWriter # install tensorboardX (pip install tensorboardX) before importing this package
from dataset.my_ast import read_pickle
import torch
import dataset.my_ast
import models, configs, data_loader
from modules import get_cosine_schedule_with_warmup
from utils import similarity, normalize
from data_loader import *
from dataset.my_data_loader import DataLoaderX
from dataset.dataset import TreeDataSet
from model.utils import gelu, subsequent_mask, clones, relative_mask
# os.chdir("C:/Users/Administrator/PycharmProjects/pytorch")
codevecs, codebase = [], []
##### Data Set #####
def load_codebase(code_path, chunk_size=2000000):
"""load codebase
codefile: h5 file that stores raw code
"""
logger.info(f'Loading codebase (chunk size={chunk_size})..')
codebase= []
codes = codecs.open(code_path, encoding='latin-1').readlines() # use codecs to read in case of encoding problem
for i in range(0, len(codes), chunk_size):
codebase.append(codes[i: i+chunk_size])
'''
import subprocess
n_lines = int(subprocess.check_output(["wc", "-l", code_path], universal_newlines=True).split()[0])
for i in range(1, n_lines+1, chunk_size):
codecs = subprocess.check_output(["sed",'-n',f'{i},{i+chunk_size}p', code_path]).split()
codebase.append(codecs)
'''
return codebase
### Results Data ###
def load_codevecs(vec_path, chunk_size=2000000):
logger.debug(f'Loading code vectors (chunk size={chunk_size})..')
"""read vectors (2D numpy array) from a hdf5 file"""
codevecs=[]
chunk_id = 0
chunk_path = f"{vec_path[:-3]}_part{chunk_id}.h5"
while os.path.exists(chunk_path):
reprs = load_vecs(chunk_path)
codevecs.append(reprs)
chunk_id+=1
chunk_path = f"{vec_path[:-3]}_part{chunk_id}.h5"
return codevecs
def search(config, model, vocab, query, n_results=10):
model.eval()
device = next(model.parameters()).device
desc, desc_len =sent2indexes(query, vocab_desc, config['desc_len'])#convert query into word indices
desc = torch.from_numpy(desc).unsqueeze(0).to(device)
desc_len = torch.from_numpy(desc_len).clamp(max=config['desc_len']).to(device)
# data_path = './data/vocab.desc.json'
# vocab_desc = load_dict(data_path)
# nl_len = len(nl)
# for i in range(nl_len):
# nl[i] = vocab_desc.get(nl[i], 3)
# # print(nl)
# # print("\n")
# # nl2index, nl_len = sent2indexes(nl, vocab_desc, 30)
# nl2long = np.array(nl).astype(np.long)
# good_desc_len = min(int(nl_len), self.max_desc_len)
# good_desc = nl2long
# good_desc = self.pad_seq(good_desc, self.max_desc_len)
with torch.no_grad():
desc_repr = model.desc_encoding(desc, desc_len).data.cpu().numpy().astype(np.float32) # [1 x dim]
if config['sim_measure']=='cos': # normalizing vector for fast cosine computation
desc_repr = normalize(desc_repr) # [1 x dim]
results =[]
threads = []
for i, codevecs_chunk in enumerate(codevecs):
t = threading.Thread(target=search_thread, args = (results, desc_repr, codevecs_chunk, i, n_results, config['sim_measure']))
threads.append(t)
for t in threads:
t.start()
for t in threads:#wait until all sub-threads have completed
t.join()
return results
def search_thread(results, desc_repr, codevecs, i, n_results, sim_measure):
#1. compute code similarities
if sim_measure=='cos':
chunk_sims = np.dot(codevecs, desc_repr.T)[:,0] # [pool_size]
else:
chunk_sims = similarity(codevecs, desc_repr, sim_measure) # [pool_size]
#2. select the top K results
negsims = np.negative(chunk_sims)
maxinds = np.argpartition(negsims, kth=n_results-1)
maxinds = maxinds[:n_results]
chunk_codes = [codebase[i][k] for k in maxinds]
chunk_sims = chunk_sims[maxinds]
results.extend(zip(chunk_codes, chunk_sims))
def postproc(codes_sims):
codes_, sims_ = zip(*codes_sims)
codes = [code for code in codes_]
sims = [sim for sim in sims_]
final_codes = []
final_sims = []
n = len(codes_sims)
for i in range(n):
is_dup=False
for j in range(i):
if codes[i][:80]==codes[j][:80] and abs(sims[i]-sims[j])<0.01:
is_dup=True
if not is_dup:
final_codes.append(codes[i])
final_sims.append(sims[i])
# return zip(final_codes,final_sims)
return final_codes
def parse_args():
parser = argparse.ArgumentParser("Train and Test Code Search(Embedding) Model")
parser.add_argument('--data_path', type=str, default='./data/', help='location of the data corpus')
parser.add_argument('--reload_from', type=int, default=420000, help='epoch to reload from')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')
parser.add_argument('--visual', default=False, help="Visualize training status in tensorboard")
parser.add_argument('--automl', action='store_true', default=False, help='use automl')
# Training Arguments
parser.add_argument('--log_every', type=int, default=100, help='interval to log autoencoder training results')
parser.add_argument('--valid_every', type=int, default=100, help='interval to validation')
parser.add_argument('--save_every', type=int, default=10000, help='interval to evaluation to concrete results')
parser.add_argument('--seed', type=int, default=1111, help='random seed')
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
# Model Hyperparameters for automl tuning
# parser.add_argument('--emb_size', type=int, default=-1, help = 'embedding dim')
parser.add_argument('--n_hidden', type=int, default=-1,
help='number of hidden dimension of code/desc representation')
parser.add_argument('--lstm_dims', type=int, default=-1)
parser.add_argument('--margin', type=float, default=-1)
parser.add_argument('--sim_measure', type=str, default='cos', help='similarity measure for training')
parser.add_argument('--learning_rate', type=float, help='learning rate')
# parser.add_argument('--adam_epsilon', type=float)
# parser.add_argument("--weight_decay", type=float, help="Weight deay if we apply some.")
# parser.add_argument('--warmup_steps', type=int)
# reserved args for automl pbt
parser.add_argument('--pause', default=0, type=int)
parser.add_argument('--iteration', default=0, type=str)
##############################################################################################################################
# parser = argparse.ArgumentParser(description='tree transformer')
parser.add_argument('-model_dir', default='train_model', help='output model weight dir')
parser.add_argument('-batch_size', type=int, default=7)
parser.add_argument('--model', type=str, default='JointEmbeder', help='model name')
parser.add_argument('-num_step', type=int, default=250)
parser.add_argument('-num_layers', type=int, default=2, help='layer num')
parser.add_argument('-model_dim', type=int, default=384)
parser.add_argument('-num_heads', type=int, default=6)
parser.add_argument('-ffn_dim', type=int, default=1536)
parser.add_argument('-data_dir', default='./data')
parser.add_argument('-dataset', default='./dataset')
parser.add_argument('-datasave', default='/codevec')
parser.add_argument('-code_max_len', type=int, default=100, help='max length of code')
parser.add_argument('-comment_max_len', type=int, default=30, help='comment max length')
parser.add_argument('-relative_pos', type=bool, default=True, help='use relative position')
parser.add_argument('-k', type=int, default=5, help='relative window size')
parser.add_argument('-max_simple_name_len', type=int, default=30, help='max simple name length')
parser.add_argument('-dropout', type=float, default=0.5)
parser.add_argument('-load', action='store_true', help='load pretrained model')
parser.add_argument('-train', action='store_true')
parser.add_argument('-test', action='store_true')
parser.add_argument('-load_epoch', type=str, default='0')
parser.add_argument('-log_dir', default='train_log/')
parser.add_argument('-g', type=int, default=1)
parser.add_argument('--chunk_size', type=int, default=2000000,
help='split code vector into chunks and store them individually. ' \
'Note: should be consistent with the same argument in the search.py')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
i2code = read_pickle(args.data_dir + '/code_i2w.pkl')
i2nl = read_pickle(args.data_dir + '/nl_i2w.pkl')
i2ast = read_pickle(args.data_dir + '/ast_i2w.pkl')
ast2id = {v: k for k, v in i2ast.items()}
code2id = {v: k for k, v in i2code.items()}
nl2id = {v: k for k, v in i2nl.items()}
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
config = getattr(configs, 'config_'+args.model)()
##### Define model ######
logger.info('Constructing Model..')
model = getattr(models, args.model)(config, ast2id)#initialize the model
ckpt=f'./output/{args.model}/{args.dataset}/models/step{args.reload_from}.h5'
# model.load_state_dict(torch.load(ckpt, map_location=device))
model = torch.load(ckpt, map_location="cpu")
data_path = args.data_path+args.datasave+'/'
vocab_desc = load_dict(data_path+config['vocab_desc'])
codebase = load_codebase(data_path+config['use_codebase'], args.chunk_size)
codevecs = load_codevecs(data_path+config['use_codevecs'], args.chunk_size)
assert len(codebase)==len(codevecs), \
"inconsistent number of chunks, check whether the specified files for codebase and code vectors are correct!"
# while True:
# try:
# query = input('Input Query: ')
# n_results = int(input('How many results? '))
# except Exception:
# print("Exception while parsing your input:")
# traceback.print_exc()
# break
# query = query.lower().replace('how to ', '').replace('how do i ', '').replace('how can i ', '').replace('?', '').strip()
# results = search(config, model, vocab_desc, query, n_results)
# results = sorted(results, reverse=True, key=lambda x:x[1])
# results = postproc(results)
# results = list(results)[:n_results]
# results = '\n\n'.join(map(str,results)) #combine the result into a returning string
# print(results)
app = Flask(__name__)
def request_parse(req_data):
if req_data.method == "POST":
print("POST")
data = req_data.form
elif req_data.method == "GET":
print("GET")
data = req_data.args
return data
@app.route("/", methods=["GET", "POST"])
def get_data():
data = request_parse(request)
query = data.get("query")
len = data.get("len")
if query is None or query == "":
return json.dumps([])
if len is None or len == "":
len = 10
else:
len = int(len)
results = search(config, model, vocab_desc, query, len)
results = sorted(results, reverse=True, key=lambda x: x[1])
results = postproc(results)
results = list(results)[:len]
# results = '\n\n'.join(map(str, results))
results = json.dumps(results)
return results
app.run(host="0.0.0.0", port=5000)