-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexer.py
92 lines (80 loc) · 3.38 KB
/
indexer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from dotenv import load_dotenv
from elasticsearch import Elasticsearch
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from tqdm import tqdm
import json
import os
import re
load_dotenv(".env")
BOOKS_FOLDER = "dataset/BOOKS/"
JSON_FOLDER = "dataset/JSON_FILES/"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELASTIC_POST_HOST = os.getenv("ELASTIC_HOST")
ELASTIC_USERNAME = os.getenv("ELASTIC_USERNAME")
ELASTIC_PWD = os.getenv("ELASTIC_PWD")
CA_CERTS = os.getenv("CA_CERTS_PATH")
CLIENT = Elasticsearch(
ELASTIC_POST_HOST,
basic_auth=(ELASTIC_USERNAME, ELASTIC_PWD),
ca_certs=CA_CERTS
)
EMBEDDINGS = OpenAIEmbeddings(
model="text-embedding-3-large",
)
# Remove unwanted special characters (such as strange symbols) but keep punctuation (.,;:) and the apostrophe
def clean_text(text):
text = re.sub(r"[^\w\s.,;:'']", '', text)
text = re.sub(r'[•~^$%\*&@!\\/\t]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = text.strip()
text = re.sub(r'(?<=\n)\n', '', text)
text = re.sub(r'\n+', '\n', text)
return text
def len_func(text):
return len(text)
text_splitter = CharacterTextSplitter(
separator= ".",
chunk_size=1200,
chunk_overlap=100,
length_function=len_func,
is_separator_regex=False
)
def main() -> object:
for book_name in os.listdir(BOOKS_FOLDER):
book_json_folder = os.path.join(JSON_FOLDER, book_name.replace(".pdf", ""))
if not os.path.exists(book_json_folder):
os.mkdir(book_json_folder)
print(f" > Creating {book_json_folder} folder")
print(f" > Reading book: {book_name}")
loader = PyPDFLoader(os.path.join(BOOKS_FOLDER, book_name))
pages = []
metadata_l = []
for single_page in loader.lazy_load():
page = json.loads(single_page.model_dump_json())
pages.append(clean_text(page["page_content"]))
metadata_l.append({
"source_file": page["metadata"]["source"].split("/")[-1],
"page_number": page["metadata"]["page"]
})
para_list = text_splitter.create_documents(texts=pages,
metadatas=metadata_l)
for i, document in tqdm(enumerate(para_list), total=len(para_list), desc=" > Generating embeddings"):
doc = json.loads(document.model_dump_json())
elastic_document = {
"id": doc["metadata"]["source_file"] + "_" + str(doc["metadata"]["page_number"]) + "_" + str(i),
"source_file": doc["metadata"]["source_file"],
"page_number": doc["metadata"]["page_number"],
"plain_text": doc["page_content"],
"embeddings": EMBEDDINGS.embed_query(doc["page_content"])
}
resp = CLIENT.index(index="llm-index", id=elastic_document["id"],
document=elastic_document)
with open(os.path.join(book_json_folder,
f"""page_{elastic_document['id']}_{resp["result"]}"""), 'w') as fp:
json.dump(elastic_document, fp)
else:
print(f" > Book {book_name} already indexed")
if __name__ == "__main__":
main()