4848
4949
5050class Beta (MPMathMultiFunction ):
51- """
52- <url>
53- :Euler beta function:
54- https://en.wikipedia.org/wiki/Beta_function</url> (<url>:SymPy:
55- https://docs.sympy.org/latest/modules/functions/
51+ r """
52+ <url>
53+ :Euler beta function:
54+ https://en.wikipedia.org/wiki/Beta_function</url> (<url>:SymPy:
55+ https://docs.sympy.org/latest/modules/functions/
5656 special.html#sympy.functions.special.beta_functions.beta</url>, <url>
57- :WMA:
58- https://reference.wolfram.com/language/ref/Beta.html</url>)
59-
60- <dl>
61- <dt>'Beta'[$a$, $b$]
62- <dd>is the Euler's Beta function.
63- <dt>'Beta'[$z$, $a$, $b$]
64- <dd>gives the incomplete Beta function.
65- </dl>
66-
67- The Beta function satisfies the property
68- Beta[x, y] = Integrate[t^ (x-1)(1-t)^(y-1),{t,0,1}] = Gamma[a] Gamma[b] / Gamma[ a + b]
69- >> Beta[2, 3]
70- = 1 / 12
71- >> 12* Beta[1., 2, 3]
72- = 1.
57+ :WMA:
58+ https://reference.wolfram.com/language/ref/Beta.html</url>)
59+
60+ <dl>
61+ <dt>'Beta'[$a$, $b$]
62+ <dd>is the Euler's Beta function $\mathrm{B}(a, b)$ .
63+ <dt>'Beta'[$z$, $a$, $b$]
64+ <dd>gives the incomplete Beta function $\mathrm{B}_z(a, b)$ .
65+ </dl>
66+
67+ The Beta function satisfies the property:
68+ $\mathrm{B} = \int_0^t t^{ (x-1)(1-t)^(y-1)} = \ Gamma(a) \ Gamma(b) / \ Gamma( a + b)$
69+ >> Beta[2, 3]
70+ = 1 / 12
71+ >> 12* Beta[1., 2, 3]
72+ = 1.
7373 """
7474
7575 attributes = A_LISTABLE | A_NUMERIC_FUNCTION | A_PROTECTED
@@ -272,7 +272,7 @@ def fact2_generic(x):
272272
273273
274274class Gamma (MPMathMultiFunction ):
275- """
275+ r """
276276 <url>:Gamma function:
277277 https://en.wikipedia.org/wiki/Gamma_function</url> (<url>
278278 :SymPy:https://docs.sympy.org/latest/modules/functions
@@ -287,35 +287,39 @@ class Gamma(MPMathMultiFunction):
287287
288288 <dl>
289289 <dt>'Gamma'[$z$]
290- <dd>is the gamma function on the complex number $z$.
290+ <dd>is the Euler gamma function, $\Gamma(z)$ on the complex number $z$.
291291
292- <dt>'Gamma'[$z $, $x $]
293- <dd>is the upper incomplete gamma function.
292+ <dt>'Gamma'[$a $, $z $]
293+ <dd>is the upper incomplete gamma function, $\Gamma(a, z)$ .
294294
295- <dt>'Gamma'[$z $, $x_0 $, $x_1 $]
296- <dd>is equivalent to ' Gamma[$z$, $x_0$ ] - Gamma[$z$, $x_1$]' .
295+ <dt>'Gamma'[$a $, $z_0 $, $z_1 $]
296+ <dd>is the generalized incomplete gamma function $\ Gamma[a, z_0 ] - \ Gamma(a, z_1)$ .
297297 </dl>
298298
299- 'Gamma[$z$]' is equivalent to '($z$ - 1)!' :
299+ 'Gamma[$z$]' is equivalent to $(z - 1)!$ :
300300 >> Simplify[Gamma[z] - (z - 1)!]
301301 = 0
302302
303- Exact arguments:
303+ Examples of using 'Gamma' with exact numeric arguments:
304304 >> Gamma[8]
305305 = 5040
306+
306307 >> Gamma[1/2]
307308 = Sqrt[Pi]
308- >> Gamma[1, x]
309- = E ^ (-x)
310- >> Gamma[0, x]
311- = ExpIntegralE[1, x]
312309
313- Numeric arguments:
314310 >> Gamma[123.78]
315311 = 4.21078×10^204
312+
316313 >> Gamma[1. + I]
317314 = 0.498016 - 0.15495 I
318315
316+ Examples of 'Gamma' with symbolic arguments:
317+
318+ >> Gamma[1, x]
319+ = E ^ (-x)
320+ >> Gamma[0, x]
321+ = ExpIntegralE[1, x]
322+
319323 Both 'Gamma' and 'Factorial' functions are continuous:
320324 >> Plot[{Gamma[x], x!}, {x, 0, 4}]
321325 = -Graphics-
0 commit comments