forked from tkarras/progressive_growing_of_gans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
h5tool.py
executable file
·712 lines (608 loc) · 32 KB
/
h5tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import sys
import io
import glob
import pickle
import argparse
import threading
import Queue
import traceback
import numpy as np
import scipy.ndimage
import PIL.Image
import h5py # conda install h5py
#----------------------------------------------------------------------------
class HDF5Exporter:
def __init__(self, h5_filename, resolution, channels=3):
rlog2 = int(np.floor(np.log2(resolution)))
assert resolution == 2 ** rlog2
self.resolution = resolution
self.channels = channels
self.h5_file = h5py.File(h5_filename, 'w')
self.h5_lods = []
self.buffers = []
self.buffer_sizes = []
for lod in xrange(rlog2, -1, -1):
r = 2 ** lod; c = channels
bytes_per_item = c * (r ** 2)
chunk_size = int(np.ceil(128.0 / bytes_per_item))
buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item))
lod = self.h5_file.create_dataset('data%dx%d' % (r,r), shape=(0,c,r,r), dtype=np.uint8,
maxshape=(None,c,r,r), chunks=(chunk_size,c,r,r), compression='gzip', compression_opts=4)
self.h5_lods.append(lod)
self.buffers.append(np.zeros((buffer_size,c,r,r), dtype=np.uint8))
self.buffer_sizes.append(0)
def close(self):
for lod in xrange(len(self.h5_lods)):
self.flush_lod(lod)
self.h5_file.close()
def add_images(self, img):
assert img.ndim == 4 and img.shape[1] == self.channels and img.shape[2] == img.shape[3]
assert img.shape[2] >= self.resolution and img.shape[2] == 2 ** int(np.floor(np.log2(img.shape[2])))
for lod in xrange(len(self.h5_lods)):
while img.shape[2] > self.resolution / (2 ** lod):
img = img.astype(np.float32)
img = (img[:, :, 0::2, 0::2] + img[:, :, 0::2, 1::2] + img[:, :, 1::2, 0::2] + img[:, :, 1::2, 1::2]) * 0.25
quant = np.uint8(np.clip(np.round(img), 0, 255))
ofs = 0
while ofs < quant.shape[0]:
num = min(quant.shape[0] - ofs, self.buffers[lod].shape[0] - self.buffer_sizes[lod])
self.buffers[lod][self.buffer_sizes[lod] : self.buffer_sizes[lod] + num] = quant[ofs : ofs + num]
self.buffer_sizes[lod] += num
if self.buffer_sizes[lod] == self.buffers[lod].shape[0]:
self.flush_lod(lod)
ofs += num
def num_images(self):
return self.h5_lods[0].shape[0] + self.buffer_sizes[0]
def flush_lod(self, lod):
num = self.buffer_sizes[lod]
if num > 0:
self.h5_lods[lod].resize(self.h5_lods[lod].shape[0] + num, axis=0)
self.h5_lods[lod][-num:] = self.buffers[lod][:num]
self.buffer_sizes[lod] = 0
#----------------------------------------------------------------------------
class ExceptionInfo(object):
def __init__(self):
self.type, self.value = sys.exc_info()[:2]
self.traceback = traceback.format_exc()
#----------------------------------------------------------------------------
class WorkerThread(threading.Thread):
def __init__(self, task_queue):
threading.Thread.__init__(self)
self.task_queue = task_queue
def run(self):
while True:
func, args, result_queue = self.task_queue.get()
if func is None:
break
try:
result = func(*args)
except:
result = ExceptionInfo()
result_queue.put((result, args))
#----------------------------------------------------------------------------
class ThreadPool(object):
def __init__(self, num_threads):
assert num_threads >= 1
self.task_queue = Queue.Queue()
self.result_queues = dict()
self.num_threads = num_threads
for idx in xrange(self.num_threads):
thread = WorkerThread(self.task_queue)
thread.daemon = True
thread.start()
def add_task(self, func, args=()):
assert hasattr(func, '__call__') # must be a function
if func not in self.result_queues:
self.result_queues[func] = Queue.Queue()
self.task_queue.put((func, args, self.result_queues[func]))
def get_result(self, func, verbose_exceptions=True): # returns (result, args)
result, args = self.result_queues[func].get()
if isinstance(result, ExceptionInfo):
if verbose_exceptions:
print '\n\nWorker thread caught an exception:\n' + result.traceback + '\n',
raise result.type, result.value
return result, args
def finish(self):
for idx in xrange(self.num_threads):
self.task_queue.put((None, (), None))
def __enter__(self): # for 'with' statement
return self
def __exit__(self, *excinfo):
self.finish()
def process_items_concurrently(self, item_iterator, process_func=lambda x: x, pre_func=lambda x: x, post_func=lambda x: x, max_items_in_flight=None):
if max_items_in_flight is None: max_items_in_flight = self.num_threads * 4
assert max_items_in_flight >= 1
results = []
retire_idx = [0]
def task_func(prepared, idx):
return process_func(prepared)
def retire_result():
processed, (prepared, idx) = self.get_result(task_func)
results[idx] = processed
while retire_idx[0] < len(results) and results[retire_idx[0]] is not None:
yield post_func(results[retire_idx[0]])
results[retire_idx[0]] = None
retire_idx[0] += 1
for idx, item in enumerate(item_iterator):
prepared = pre_func(item)
results.append(None)
self.add_task(func=task_func, args=(prepared, idx))
while retire_idx[0] < idx - max_items_in_flight + 2:
for res in retire_result(): yield res
while retire_idx[0] < len(results):
for res in retire_result(): yield res
#----------------------------------------------------------------------------
def inspect(h5_filename):
print '%-20s%s' % ('HDF5 filename', h5_filename)
file_size = os.stat(h5_filename).st_size
print '%-20s%.2f GB' % ('Total size', float(file_size) / np.exp2(30))
h5 = h5py.File(h5_filename, 'r')
lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
shapes = [lod.shape for lod in lods]
shape = shapes[0]
h5.close()
print '%-20s%d' % ('Total images', shape[0])
print '%-20s%dx%d' % ('Resolution', shape[3], shape[2])
print '%-20s%d' % ('Color channels', shape[1])
print '%-20s%.2f KB' % ('Size per image', float(file_size) / shape[0] / np.exp2(10))
if len(lods) != int(np.log2(shape[3])) + 1:
print 'Warning: The HDF5 file contains incorrect number of LODs'
if any(s[0] != shape[0] for s in shapes):
print 'Warning: The HDF5 file contains inconsistent number of images in different LODs'
print 'Perhaps the dataset creation script was terminated abruptly?'
#----------------------------------------------------------------------------
def compare(first_h5, second_h5):
print 'Comparing %s vs. %s' % (first_h5, second_h5)
h5_a = h5py.File(first_h5, 'r')
h5_b = h5py.File(second_h5, 'r')
lods_a = sorted([value for key, value in h5_a.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
lods_b = sorted([value for key, value in h5_b.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
shape_a = lods_a[0].shape
shape_b = lods_b[0].shape
if shape_a[1] != shape_b[1]:
print 'The datasets have different number of color channels: %d vs. %d' % (shape_a[1], shape_b[1])
elif shape_a[3] != shape_b[3] or shape_a[2] != shape_b[2]:
print 'The datasets have different resolution: %dx%d vs. %dx%d' % (shape_a[3], shape_a[2], shape_b[3], shape_b[2])
else:
min_images = min(shape_a[0], shape_b[0])
num_diffs = 0
for idx in xrange(min_images):
print '%d / %d\r' % (idx, min_images),
if np.any(lods_a[0][idx] != lods_b[0][idx]):
print '%-40s\r' % '',
print 'Different image: %d' % idx
num_diffs += 1
if shape_a[0] != shape_b[0]:
print 'The datasets contain different number of images: %d vs. %d' % (shape_a[0], shape_b[0])
if num_diffs == 0:
print 'All %d images are identical.' % min_images
else:
print '%d images out of %d are different.' % (num_diffs, min_images)
h5_a.close()
h5_b.close()
#----------------------------------------------------------------------------
def display(h5_filename, start=None, stop=None, step=None):
print 'Displaying images from %s' % h5_filename
h5 = h5py.File(h5_filename, 'r')
lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
indices = range(lods[0].shape[0])
indices = indices[start : stop : step]
import cv2 # pip install opencv-python
window_name = 'h5tool'
cv2.namedWindow(window_name)
print 'Press SPACE or ENTER to advance, ESC to exit.'
for idx in indices:
print '%d / %d\r' % (idx, lods[0].shape[0]),
img = lods[0][idx]
img = img.transpose(1, 2, 0) # CHW => HWC
img = img[:, :, ::-1] # RGB => BGR
cv2.imshow(window_name, img)
c = cv2.waitKey()
if c == 27:
break
h5.close()
print '%-40s\r' % '',
print 'Done.'
#----------------------------------------------------------------------------
def extract(h5_filename, output_dir, start=None, stop=None, step=None):
print 'Extracting images from %s to %s' % (h5_filename, output_dir)
h5 = h5py.File(h5_filename, 'r')
lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
shape = lods[0].shape
indices = range(shape[0])[start : stop : step]
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
for idx in indices:
print '%d / %d\r' % (idx, shape[0]),
img = lods[0][idx]
if img.shape[0] == 1:
img = PIL.Image.fromarray(img[0], 'L')
else:
img = PIL.Image.fromarray(img.transpose(1, 2, 0), 'RGB')
img.save(os.path.join(output_dir, 'img%08d.png' % idx))
h5.close()
print '%-40s\r' % '',
print 'Extracted %d images.' % len(indices)
#----------------------------------------------------------------------------
def create_custom(h5_filename, image_dir):
print 'Creating custom dataset %s from %s' % (h5_filename, image_dir)
glob_pattern = os.path.join(image_dir, '*')
image_filenames = sorted(glob.glob(glob_pattern))
if len(image_filenames) == 0:
print 'Error: No input images found in %s' % glob_pattern
return
img = np.asarray(PIL.Image.open(image_filenames[0]))
resolution = img.shape[0]
channels = img.shape[2] if img.ndim == 3 else 1
if img.shape[1] != resolution:
print 'Error: Input images must have the same width and height'
return
if resolution != 2 ** int(np.floor(np.log2(resolution))):
print 'Error: Input image resolution must be a power-of-two'
return
if channels not in [1, 3]:
print 'Error: Input images must be stored as RGB or grayscale'
h5 = HDF5Exporter(h5_filename, resolution, channels)
for idx in xrange(len(image_filenames)):
print '%d / %d\r' % (idx, len(image_filenames)),
img = np.asarray(PIL.Image.open(image_filenames[idx]))
if channels == 1:
img = img[np.newaxis, :, :] # HW => CHW
else:
img = img.transpose(2, 0, 1) # HWC => CHW
h5.add_images(img[np.newaxis])
print '%-40s\r' % 'Flushing data...',
h5.close()
print '%-40s\r' % '',
print 'Added %d images.' % len(image_filenames)
#----------------------------------------------------------------------------
def create_mnist(h5_filename, mnist_dir, export_labels=False):
print 'Loading MNIST data from %s' % mnist_dir
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
labels = np.frombuffer(file.read(), np.uint8, offset=8)
images = images.reshape(-1, 1, 28, 28)
images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
assert labels.shape == (60000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
print 'Creating %s' % h5_filename
h5 = HDF5Exporter(h5_filename, 32, 1)
h5.add_images(images)
h5.close()
if export_labels:
npy_filename = os.path.splitext(h5_filename)[0] + '-labels.npy'
print 'Creating %s' % npy_filename
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
np.save(npy_filename, onehot)
print 'Added %d images.' % images.shape[0]
#----------------------------------------------------------------------------
def create_mnist_rgb(h5_filename, mnist_dir, num_images=1000000, random_seed=123):
print 'Loading MNIST data from %s' % mnist_dir
import gzip
with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
images = np.frombuffer(file.read(), np.uint8, offset=16)
images = images.reshape(-1, 28, 28)
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
print 'Creating %s' % h5_filename
h5 = HDF5Exporter(h5_filename, 32, 3)
np.random.seed(random_seed)
for idx in xrange(num_images):
if idx % 100 == 0:
print '%d / %d\r' % (idx, num_images),
h5.add_images(images[np.newaxis, np.random.randint(images.shape[0], size=3)])
print '%-40s\r' % 'Flushing data...',
h5.close()
print '%-40s\r' % '',
print 'Added %d images.' % num_images
#----------------------------------------------------------------------------
def create_cifar10(h5_filename, cifar10_dir, export_labels=False):
print 'Loading CIFAR-10 data from %s' % cifar10_dir
images = []
labels = []
for batch in xrange(1, 6):
with open(os.path.join(cifar10_dir, 'data_batch_%d' % batch), 'rb') as file:
data = pickle.load(file)
images.append(data['data'].reshape(-1, 3, 32, 32))
labels.append(np.uint8(data['labels']))
images = np.concatenate(images)
labels = np.concatenate(labels)
assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
print 'Creating %s' % h5_filename
h5 = HDF5Exporter(h5_filename, 32, 3)
h5.add_images(images)
h5.close()
if export_labels:
npy_filename = os.path.splitext(h5_filename)[0] + '-labels.npy'
print 'Creating %s' % npy_filename
onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
onehot[np.arange(labels.size), labels] = 1.0
np.save(npy_filename, onehot)
print 'Added %d images.' % images.shape[0]
#----------------------------------------------------------------------------
def create_lsun(h5_filename, lmdb_dir, resolution=256, max_images=None):
print 'Creating LSUN dataset %s from %s' % (h5_filename, lmdb_dir)
import lmdb # pip install lmdb
import cv2 # pip install opencv-python
with lmdb.open(lmdb_dir, readonly=True).begin(write=False) as txn:
total_images = txn.stat()['entries']
if max_images is None:
max_images = total_images
h5 = HDF5Exporter(h5_filename, resolution, 3)
for idx, (key, value) in enumerate(txn.cursor()):
print '%d / %d\r' % (h5.num_images(), min(h5.num_images() + total_images - idx, max_images)),
try:
try:
img = cv2.imdecode(np.fromstring(value, dtype=np.uint8), 1)
if img is None:
raise IOError('cv2.imdecode failed')
img = img[:, :, ::-1] # BGR => RGB
except IOError:
img = np.asarray(PIL.Image.open(io.BytesIO(value)))
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) / 2 : (img.shape[0] + crop) / 2, (img.shape[1] - crop) / 2 : (img.shape[1] + crop) / 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((resolution, resolution), PIL.Image.ANTIALIAS)
img = np.asarray(img)
img = img.transpose(2, 0, 1) # HWC => CHW
h5.add_images(img[np.newaxis])
except:
print '%-40s\r' % '',
print sys.exc_info()[1]
raise
if h5.num_images() == max_images:
break
print '%-40s\r' % 'Flushing data...',
num_added = h5.num_images()
h5.close()
print '%-40s\r' % '',
print 'Added %d images.' % num_added
#----------------------------------------------------------------------------
def create_celeba(h5_filename, celeba_dir, cx=89, cy=121):
print 'Creating CelebA dataset %s from %s' % (h5_filename, celeba_dir)
glob_pattern = os.path.join(celeba_dir, 'img_align_celeba_png', '*.png')
image_filenames = sorted(glob.glob(glob_pattern))
num_images = 202599
if len(image_filenames) != num_images:
print 'Error: Expected to find %d images in %s' % (num_images, glob_pattern)
return
h5 = HDF5Exporter(h5_filename, 128, 3)
for idx in xrange(num_images):
print '%d / %d\r' % (idx, num_images),
img = np.asarray(PIL.Image.open(image_filenames[idx]))
assert img.shape == (218, 178, 3)
img = img[cy - 64 : cy + 64, cx - 64 : cx + 64]
img = img.transpose(2, 0, 1) # HWC => CHW
h5.add_images(img[np.newaxis])
print '%-40s\r' % 'Flushing data...',
h5.close()
print '%-40s\r' % '',
print 'Added %d images.' % num_images
#----------------------------------------------------------------------------
def create_celeba_hq(h5_filename, celeba_dir, delta_dir, num_threads=4, num_tasks=100):
print 'Loading CelebA data from %s' % celeba_dir
glob_pattern = os.path.join(celeba_dir, 'img_celeba', '*.jpg')
glob_expected = 202599
if len(glob.glob(glob_pattern)) != glob_expected:
print 'Error: Expected to find %d images in %s' % (glob_expected, glob_pattern)
return
with open(os.path.join(celeba_dir, 'Anno', 'list_landmarks_celeba.txt'), 'rt') as file:
landmarks = [[float(value) for value in line.split()[1:]] for line in file.readlines()[2:]]
landmarks = np.float32(landmarks).reshape(-1, 5, 2)
print 'Loading CelebA-HQ deltas from %s' % delta_dir
import hashlib
import bz2
import zipfile
import base64
import cryptography.hazmat.primitives.hashes
import cryptography.hazmat.backends
import cryptography.hazmat.primitives.kdf.pbkdf2
import cryptography.fernet
glob_pattern = os.path.join(delta_dir, 'delta*.zip')
glob_expected = 30
if len(glob.glob(glob_pattern)) != glob_expected:
print 'Error: Expected to find %d zips in %s' % (glob_expected, glob_pattern)
return
with open(os.path.join(delta_dir, 'image_list.txt'), 'rt') as file:
lines = [line.split() for line in file]
fields = dict()
for idx, field in enumerate(lines[0]):
type = int if field.endswith('idx') else str
fields[field] = [type(line[idx]) for line in lines[1:]]
# Check Pillow version.
if PIL.__dict__.get('PILLOW_VERSION', '') != '3.1.1':
print 'Error: create_celeba_hq requires Pillow 3.1.1'
return
# Check libjpeg version.
img = np.array(PIL.Image.open(os.path.join(celeba_dir, 'img_celeba', '000001.jpg')))
md5 = hashlib.md5()
md5.update(img.tobytes())
if md5.hexdigest() != '9cad8178d6cb0196b36f7b34bc5eb6d3':
print 'Error: create_celeba_hq requires libjpeg8d'
return
def rot90(v):
return np.array([-v[1], v[0]])
def process_func(idx):
# Load original image.
orig_idx = fields['orig_idx'][idx]
orig_file = fields['orig_file'][idx]
orig_path = os.path.join(celeba_dir, 'img_celeba', orig_file)
img = PIL.Image.open(orig_path)
# Choose oriented crop rectangle.
lm = landmarks[orig_idx]
eye_avg = (lm[0] + lm[1]) * 0.5 + 0.5
mouth_avg = (lm[3] + lm[4]) * 0.5 + 0.5
eye_to_eye = lm[1] - lm[0]
eye_to_mouth = mouth_avg - eye_avg
x = eye_to_eye - rot90(eye_to_mouth)
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = rot90(x)
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
zoom = 1024 / (np.hypot(*x) * 2)
# Shrink.
shrink = int(np.floor(0.5 / zoom))
if shrink > 1:
size = (int(np.round(float(img.size[0]) / shrink)), int(np.round(float(img.size[1]) / shrink)))
img = img.resize(size, PIL.Image.ANTIALIAS)
quad /= shrink
zoom *= shrink
# Crop.
border = max(int(np.round(1024 * 0.1 / zoom)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Simulate super-resolution.
superres = int(np.exp2(np.ceil(np.log2(zoom))))
if superres > 1:
img = img.resize((img.size[0] * superres, img.size[1] * superres), PIL.Image.ANTIALIAS)
quad *= superres
zoom /= superres
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if max(pad) > border - 4:
pad = np.maximum(pad, int(np.round(1024 * 0.3 / zoom)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.mgrid[:h, :w, :1]
mask = 1.0 - np.minimum(np.minimum(np.float32(x) / pad[0], np.float32(y) / pad[1]), np.minimum(np.float32(w-1-x) / pad[2], np.float32(h-1-y) / pad[3]))
blur = 1024 * 0.02 / zoom
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.round(img), 0, 255)), 'RGB')
quad += pad[0:2]
# Transform.
img = img.transform((4096, 4096), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
img = img.resize((1024, 1024), PIL.Image.ANTIALIAS)
img = np.asarray(img).transpose(2, 0, 1)
# Verify MD5.
md5 = hashlib.md5()
md5.update(img.tobytes())
assert md5.hexdigest() == fields['proc_md5'][idx]
# Load delta image and original JPG.
with zipfile.ZipFile(os.path.join(delta_dir, 'deltas%05d.zip' % (idx - idx % 1000)), 'r') as zip:
delta_bytes = zip.read('delta%05d.dat' % idx)
with open(orig_path, 'rb') as file:
orig_bytes = file.read()
# Decrypt delta image, using original JPG data as decryption key.
algorithm = cryptography.hazmat.primitives.hashes.SHA256()
backend = cryptography.hazmat.backends.default_backend()
kdf = cryptography.hazmat.primitives.kdf.pbkdf2.PBKDF2HMAC(algorithm=algorithm, length=32, salt=orig_file, iterations=100000, backend=backend)
key = base64.urlsafe_b64encode(kdf.derive(orig_bytes))
delta = np.frombuffer(bz2.decompress(cryptography.fernet.Fernet(key).decrypt(delta_bytes)), dtype=np.uint8).reshape(3, 1024, 1024)
# Apply delta image.
img = img + delta
# Verify MD5.
md5 = hashlib.md5()
md5.update(img.tobytes())
assert md5.hexdigest() == fields['final_md5'][idx]
return idx, img
print 'Creating %s' % h5_filename
h5 = HDF5Exporter(h5_filename, 1024, 3)
with ThreadPool(num_threads) as pool:
print '%d / %d\r' % (0, len(fields['idx'])),
for idx, img in pool.process_items_concurrently(fields['idx'], process_func=process_func, max_items_in_flight=num_tasks):
h5.add_images(img[np.newaxis])
print '%d / %d\r' % (idx + 1, len(fields['idx'])),
print '%-40s\r' % 'Flushing data...',
h5.close()
print '%-40s\r' % '',
print 'Added %d images.' % len(fields['idx'])
#----------------------------------------------------------------------------
def execute_cmdline(argv):
prog = argv[0]
parser = argparse.ArgumentParser(
prog = prog,
description = 'Tool for creating, extracting, and visualizing HDF5 datasets.',
epilog = 'Type "%s <command> -h" for more information.' % prog)
subparsers = parser.add_subparsers(dest='command')
def add_command(cmd, desc, example=None):
epilog = 'Example: %s %s' % (prog, example) if example is not None else None
return subparsers.add_parser(cmd, description=desc, help=desc, epilog=epilog)
p = add_command( 'inspect', 'Print information about HDF5 dataset.',
'inspect mnist-32x32.h5')
p.add_argument( 'h5_filename', help='HDF5 file to inspect')
p = add_command( 'compare', 'Compare two HDF5 datasets.',
'compare mydataset.h5 mnist-32x32.h5')
p.add_argument( 'first_h5', help='First HDF5 file to compare')
p.add_argument( 'second_h5', help='Second HDF5 file to compare')
p = add_command( 'display', 'Display images in HDF5 dataset.',
'display mnist-32x32.h5')
p.add_argument( 'h5_filename', help='HDF5 file to visualize')
p.add_argument( '--start', help='Start index (inclusive)', type=int, default=None)
p.add_argument( '--stop', help='Stop index (exclusive)', type=int, default=None)
p.add_argument( '--step', help='Step between consecutive indices', type=int, default=None)
p = add_command( 'extract', 'Extract images from HDF5 dataset.',
'extract mnist-32x32.h5 cifar10-images')
p.add_argument( 'h5_filename', help='HDF5 file to extract')
p.add_argument( 'output_dir', help='Directory to extract the images into')
p.add_argument( '--start', help='Start index (inclusive)', type=int, default=None)
p.add_argument( '--stop', help='Stop index (exclusive)', type=int, default=None)
p.add_argument( '--step', help='Step between consecutive indices', type=int, default=None)
p = add_command( 'create_custom', 'Create HDF5 dataset for custom images.',
'create_custom mydataset.h5 myimagedir')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'image_dir', help='Directory to read the images from')
p = add_command( 'create_mnist', 'Create HDF5 dataset for MNIST.',
'create_mnist mnist-32x32.h5 ~/mnist --export_labels')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'mnist_dir', help='Directory to read MNIST data from')
p.add_argument( '--export_labels', help='Create *-labels.npy alongside the HDF5', action='store_true')
p = add_command( 'create_mnist_rgb', 'Create HDF5 dataset for MNIST-RGB.',
'create_mnist_rgb mnist-rgb-32x32.h5 ~/mnist')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'mnist_dir', help='Directory to read MNIST data from')
p.add_argument( '--num_images', help='Number of composite images to create (default: 1000000)', type=int, default=1000000)
p.add_argument( '--random_seed', help='Random seed (default: 123)', type=int, default=123)
p = add_command( 'create_cifar10', 'Create HDF5 dataset for CIFAR-10.',
'create_cifar10 cifar-10-32x32.h5 ~/cifar10 --export_labels')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'cifar10_dir', help='Directory to read CIFAR-10 data from')
p.add_argument( '--export_labels', help='Create *-labels.npy alongside the HDF5', action='store_true')
p = add_command( 'create_lsun', 'Create HDF5 dataset for single LSUN category.',
'create_lsun lsun-airplane-256x256-100k.h5 ~/lsun/airplane_lmdb --resolution 256 --max_images 100000')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'lmdb_dir', help='Directory to read LMDB database from')
p.add_argument( '--resolution', help='Output resolution (default: 256)', type=int, default=256)
p.add_argument( '--max_images', help='Maximum number of images (default: none)', type=int, default=None)
p = add_command( 'create_celeba', 'Create HDF5 dataset for CelebA.',
'create_celeba celeba-128x128.h5 ~/celeba')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'celeba_dir', help='Directory to read CelebA data from')
p.add_argument( '--cx', help='Center X coordinate (default: 89)', type=int, default=89)
p.add_argument( '--cy', help='Center Y coordinate (default: 121)', type=int, default=121)
p = add_command( 'create_celeba_hq', 'Create HDF5 dataset for CelebA-HQ.',
'create_celeba_hq celeba-hq-1024x1024.h5 ~/celeba ~/celeba-hq-deltas')
p.add_argument( 'h5_filename', help='HDF5 file to create')
p.add_argument( 'celeba_dir', help='Directory to read CelebA data from')
p.add_argument( 'delta_dir', help='Directory to read CelebA-HQ deltas from')
p.add_argument( '--num_threads', help='Number of concurrent threads (default: 4)', type=int, default=4)
p.add_argument( '--num_tasks', help='Number of concurrent processing tasks (default: 100)', type=int, default=100)
args = parser.parse_args(argv[1:])
func = globals()[args.command]
del args.command
func(**vars(args))
#----------------------------------------------------------------------------
if __name__ == "__main__":
execute_cmdline(sys.argv)
#----------------------------------------------------------------------------