-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_crFHN_predictions.py
54 lines (39 loc) · 1.77 KB
/
evaluate_crFHN_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
import SimpleITK as sitk
from datautils.conversion import *
import evalutils.metrics as metrics
DATA_DIR = "/home/zk315372/Chinmay/Datasets/HECKTOR/hecktor_train/crFHN_rs113_hecktor_nii"
CENTRE_ID = "CHUM"
PATIENT_ID_FILEPATH = "./hecktor_meta/patient_IDs_train.txt"
PREDS_DIR = "/home/zk315372/Chinmay/model_predictions/hecktor-crFHN_rs113/msam3d_petct/patch_sample-pet_weighted/predicted"
OUTPUT_DIR = "/home/zk315372/Chinmay/model_performances/hecktor-crFHN_rs113/msam3d_petct/patch_sample-pet_weighted"
def main():
data_dir = DATA_DIR
preds_dir = PREDS_DIR
output_dir = OUTPUT_DIR
os.makedirs(output_dir, exist_ok=True)
# output_dir = "./temp_dir" ##
with open(PATIENT_ID_FILEPATH, 'r') as pf:
patient_ids = [p_id for p_id in pf.read().split('\n') if p_id != '']
centre_patient_ids = [p_id for p_id in patient_ids if CENTRE_ID in p_id]
patient_dice_dict = {}
avg_dice = 0
for p_id in tqdm(centre_patient_ids): # For each patient in this centre
# Fetch the labelmaps
gtv_labelmap = sitk2np(sitk.ReadImage(f"{data_dir}/{p_id}_ct_gtvt.nii.gz"), keep_whd_ordering=True).astype(np.int8)
pred_labelmap = sitk2np(sitk.ReadImage(f"{preds_dir}/{p_id}_pred_gtvt.nrrd"), keep_whd_ordering=True).astype(np.int8)
# Compute metrics
dice_score = metrics.dice(pred_labelmap, gtv_labelmap)
# Accumulate
patient_dice_dict[p_id] = dice_score
avg_dice += dice_score
avg_dice /= len(centre_patient_ids)
patient_dice_dict['average'] = avg_dice
df = pd.DataFrame.from_dict(patient_dice_dict, orient="index")
print(df)
df.to_csv(f"{output_dir}/per_patient_metrics.csv")
if __name__ == '__main__':
main()