-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathcallback_eval.py
292 lines (248 loc) · 10.5 KB
/
callback_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import numpy as np
import keras
import keras.backend as K
from timeit import default_timer as timer
import skimage.io as io
import skimage.transform as transform
import os, glob, time
import cv2
from decode_np import Decode
def search_all_files_return_by_time_reversed(path, reverse=True):
return sorted(glob.glob(os.path.join(path, '*.h5')), key=lambda x: time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(os.path.getctime(x))), reverse=reverse)
class Evaluate(keras.callbacks.Callback):
""" Evaluation callback for arbitrary datasets.
"""
def __init__(
self,
model_body=None,
anchors=None,
class_names=None,
iou_threshold=0.45,
score_threshold=0.5,
max_boxes=450,
tensorboard=None,
weighted_average=False,
eval_file='2007_val.txt',
log_dir='logs/000/',
verbose=1
):
""" Evaluate a given dataset using a given model at the end of every epoch during training.
# Arguments
iou_threshold : The threshold used to consider when a detection is positive or negative.
score_threshold : The score confidence threshold to use for detections.
max_detections : The maximum number of detections to use per image.
save_path : The path to save images with visualized detections to.
tensorboard : Instance of keras.callbacks.TensorBoard used to log the mAP value.
weighted_average : Compute the mAP using the weighted average of precisions among classes.
verbose : Set the verbosity level, by default this is set to 1.
"""
self.model_body = model_body
self.anchors = anchors
self.class_names = class_names
self.iou_threshold = iou_threshold
self.score_threshold = score_threshold
self.max_boxes = max_boxes
self.tensorboard = tensorboard
self.weighted_average = weighted_average
self.eval_file = eval_file
self.log_dir = log_dir
self.verbose = verbose
self.sess = K.get_session()
# 验证时的分数阈值和nms_iou阈值
conf_thresh = score_threshold
nms_thresh = 0.45
self._decode = Decode(conf_thresh, nms_thresh, (608,608), self.model_body, self.class_names)
super(Evaluate, self).__init__()
def calc_image(self, image, model_image_size=(608, 608)):
start = timer()
image, boxes, scores, classes = self._decode.detect_image(image, False)
end = timer()
#print(end - start)
return boxes, scores, classes
def calc_result(self, epoch):
with open(self.eval_file) as f:
lines = f.readlines()
#np.random.shuffle(lines)
result_file = open('eval_result_{}.txt'.format(epoch+1), 'w')
count = 0
for annotation_line in lines[:500]:
#print(count)
annotation = annotation_line.split()
image = cv2.imread(annotation[0])
out_boxes, out_scores, out_classes = self.calc_image(image)
result_file.write(annotation[0] + ' ')
if out_boxes is None:
result_file.write('\n')
count = count+1
continue
for i in range(len(out_boxes)):
top, left, bottom, right = out_boxes[i]
result_file.write(' ' + ','.join([str(left), str(top), str(right), str(bottom)]) + ',' + str(out_scores[i]) + ',' + str(out_classes[i]))
result_file.write('\n')
count = count+1
def parse_rec(self, annotations):
objects = []
for obj in annotations:
values = obj.split(',')
obj_struct = {}
obj_struct['name'] = values[4]
obj_struct['difficult'] = 0
obj_struct['bbox'] = [int(values[0]),
int(values[1]),
int(values[2]),
int(values[3])]
objects.append(obj_struct)
return objects
def voc_ap(self, rec, prec, use_07_metric=False):
"""Compute VOC AP given precision and recall. If use_07_metric is true, uses
the VOC 07 11-point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def map_eval(self,
result_path,
anno_path,
classname,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
result_path: Path to detections
detpath.format(classname) should produce the detection results file.
anno_path: Path to annotations
annopath.format(imagename) should be the xml annotations file.
classname: Category name (duh)
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# first load gt
recs = {}
imagenames = []
with open(anno_path, 'r') as f:
lines = f.readlines()
for annotation_line in lines:
annotation = annotation_line.split()
imagename = annotation[0]
imagenames.append(imagename)
recs[imagename] = self.parse_rec(annotation[1:])
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets
with open(result_path, 'r') as f:
lines = f.readlines()
image_ids = []
confidence = []
BB = []
for result_line in lines:
result = result_line.split()
for obj in result[1:]:
values = obj.split(',')
if values[5] == classname:
image_ids.append(result[0])
confidence.append(float(values[4]))
BB.append([float(values[1]), float(values[0]), float(values[3]), float(values[2])])
confidence = np.reshape(confidence, (len(image_ids)))
BB = np.reshape(BB, (len(image_ids), 4))
# sort by confidence
sorted_ind = np.argsort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self.voc_ap(rec, prec, use_07_metric)
return rec, prec, ap, nd
def on_epoch_end(self, epoch, logs=None):
weight_latest = search_all_files_return_by_time_reversed(self.log_dir)[0]
print("Epoch end eval mAP on weight {}".format(weight_latest))
self.model_body.load_weights(weight_latest)
self.calc_result(epoch)
#计算mAP
aps = []
counts = []
for classname in self.class_names:
rec, prec, ap, count = self.map_eval('eval_result_{}.txt'.format(epoch+1), self.eval_file, classname)
aps.append(ap)
counts.append(count)
aps = np.array(aps)
counts = np.array(counts)
mAP = np.sum(aps * counts) / np.sum(counts)
print('Epoch {} mAP {}'.format(epoch+1, mAP))