-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cross_validation.py
175 lines (133 loc) · 6.75 KB
/
train_cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import warnings
warnings.filterwarnings("ignore", category=UserWarning) # Suppress warnings
import pandas as pd
import numpy as np
import argparse
import os
import sys
sys.path.append('/home/hferrar/HMG/utils')
from utils.visualize import create_directory
from dataset.dataset import Kimore, load_data,load_class
from sklearn.model_selection import train_test_split
from model.scvae import SCVAE
from torch.utils.data import DataLoader, TensorDataset,Subset
import torch
from utils.normalize import normalize_skeletons
def get_args():
parser = argparse.ArgumentParser(
description="Choose which samples to train the VAE on with the type of split.")
parser.add_argument(
'--dataset',
type=str,
default='Kimore',
help="Which dataset to use.")
parser.add_argument(
'--output-directory',
type=str,
default='results/')
parser.add_argument(
'--runs',
type=int,
default=1,
help="How many times you want to run the model")
parser.add_argument(
'--weight-rec',
type=float,
default=0.999,
help="Weight for the reconstruction loss.")
parser.add_argument(
'--weight-kl',
type=float,
default=1e-3,
help="Weight for the KL loss.")
parser.add_argument(
'--epochs',
type=int,
default=2000,
help="Number of epochs to train the model.")
parser.add_argument(
'--device',
type=str,
choices=['cpu', 'cuda', 'mps'],
default='cuda' if torch.cuda.is_available() else ('mps' if torch.backends.mps.is_available() else 'cpu'))
parser.add_argument(
'--class_index',
type=int,
default=5,
help="Which class to generate from")
parser.add_argument(
'--generative-model',
type=str,
default='SCVAE',
help="Which generative model to use.")
args = parser.parse_args()
return args
def load_indices(class_index,fold_idx):
train_indices = np.load(f'../folds_indexes/ex{class_index+1}/indexes_train_fold{fold_idx-1}.npy')
test_indices = np.load(f'../folds_indexes/ex{class_index+1}/indexes_test_fold{fold_idx-1}.npy')
return train_indices,test_indices
def create_dataloaders(data, labels, scores, train_idx, test_idx, batch_size):
data,_,_,_,_,_,_ = normalize_skeletons(data)
train_data = Subset(Kimore(data, labels, scores), train_idx)
test_data = Subset(Kimore(data, labels, scores), test_idx)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
return train_loader, test_loader
if __name__ == "__main__":
args = get_args()
output_directory_results = args.output_directory
create_directory(output_directory_results)
output_directory_gen_models = output_directory_results + 'Generative_models/'
create_directory(output_directory_gen_models)
output_directory_dataset = output_directory_gen_models + args.dataset + '/'
create_directory(output_directory_dataset)
output_directory_generator = output_directory_dataset + args.generative_model + '/'
create_directory(output_directory_generator)
output_directory_weights_losses = output_directory_generator + 'Wrec_' + str(args.weight_rec) + '_Wkl_' + str(args.weight_kl) + '/'
create_directory(output_directory_weights_losses)
for _run in range(args.runs):
for class_index in range(args.class_index):
output_directory_run = output_directory_results + 'cross_validation'+'/'+ 'run_' + str(_run) + '/'
create_directory(output_directory_run)
output_directory_cross_val = output_directory_run
create_directory(output_directory_cross_val)
output_directory_fold_class = output_directory_cross_val + 'class_' + str(class_index) + '/'
create_directory(output_directory_fold_class)
results = []
dataset_dir = 'data/' + args.dataset + '/'
data,labels,scores = load_class(class_index,root_dir=dataset_dir)
for fold_idx in range(1, 6):
print(f'Processing Fold {fold_idx}')
output_directory_fold = output_directory_fold_class + 'fold_' + str(fold_idx) + '/'
create_directory(output_directory_fold)
# output_directory_skeletons = output_directory_fold + 'generated_samples/'
# create_directory(output_directory_skeletons)
# train_data, train_labels, train_scores, test_data, test_labels, test_scores = load_fold_data(fold_idx)
# train_dataset = Kimore(train_data,train_labels,train_scores)
# test_dataset = Kimore(test_data, test_labels, test_scores)
# train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
# test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
train_indices,test_indices = load_indices(class_index,fold_idx)
train_loader, test_loader = create_dataloaders(data,labels,scores,train_indices,test_indices,batch_size=16 )
if args.generative_model == 'SCVAE':
generator = SCVAE(output_directory=output_directory_fold,
epochs=args.epochs,
device=args.device,
w_rec=args.weight_rec,
w_kl=args.weight_kl)
generator.train_function(train_loader, args.device)
test_loss = generator.evaluate_function(test_loader, args.device)
results.append(test_loss)
print(f'Fold {fold_idx} Test Loss: {test_loss}')
average_test_loss = np.mean(results)
print(f'Average Test Loss: {average_test_loss}')
# generator.generate_samples_from_prior(args.device,args.class_index,output_directory_skeletons,test_loader)
# generator.generate_samples_from_posterior(args.device,args.class_index,output_directory_skeletons,test_loader)
# def load_fold_data(fold_idx):
# train_data = np.load(f'data/folds/train_data_fold{fold_idx}.npy')
# train_labels = np.load(f'data/folds/train_labels_fold{fold_idx}.npy')
# train_scores = np.load(f'data/folds/train_scores_fold{fold_idx}.npy')
# test_data = np.load(f'data/folds/test_data_fold{fold_idx}.npy')
# test_labels = np.load(f'data/folds/test_labels_fold{fold_idx}.npy')
# test_scores = np.load(f'data/folds/test_scores_fold{fold_idx}.npy')
# return train_data, train_labels, train_scores, test_data, test_labels, test_scores