-
Notifications
You must be signed in to change notification settings - Fork 0
/
Analysis.R
430 lines (329 loc) · 12.8 KB
/
Analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Author: Donata Stonkute
###############################################################################
# --------------------------------
# This script includes discrete-time regression models, life table simulation
# and the Sullivan method for a single country.
# This produces gender- and education-specific life, disability and disability-free
# expectancies at age 50 that are saved in data files.
# Please check compatibility of your computer for running parallel computing
# --------------------------------
Sys.setenv(LANG = "en")
# libraries
library(tidyverse)
library(future)
library(furrr)
library(data.table)
library(tictoc)
# Set working directory
# setwd("your_directory")
# get necessary functions
source('Functions.R')
# If you followed the code in "Analytical_sample_prep.R", you should have a folder
# "Data" with subdata files of individual countries.
# Here I will provide an example using Austria.
dat <- fread("Data/Austria.csv")
dtm <- dat %>% filter(gender=="man")
dtf <- dat %>% filter(gender=="woman")
age <- seq(50, 110, 2) # panel structure
bs_it = 1000 # number of bootstraps
## Men -------------------------------------------------------------------
# create empty vectors to store the results
men_start <- c()
tic() # for time monitoring
plan(multisession, workers = 10) # if more cores chosen, process becomes slower
# plan(sequential) # if run locally, instead of servers
men_start <- 1:bs_it %>% furrr::future_map(~ { # ~ everything on the left
age <- seq(50, 110, 2) # panel structure
resampled_data <- long_resample(dat=dtm, id= "mergeid", time= "wave")
###- prevalence vector preparation -###
labels <- c(seq(50, 90, 2))
prevalence <- resampled_data %>%
mutate(
age = cut(
age,
breaks = c(seq(50, 90, by = 2), 120),
labels = labels,
right = FALSE
),
edu = factor(edu, levels = c("low", "medium", "high")),
gender = factor(gender, levels = c("woman", "man"))
) %>%
filter(gali != 99 # we estimate prevalence among alive only
)
## By GALI
wx <- prevalence %>%
group_by(country, gender, edu, age) %>%
mutate(wx = mean(gali)) %>%
ungroup() %>%
select(country, gender, edu, age, wx) %>%
distinct() %>%
arrange(country,gender, edu, age)
# discrete-time models - probabilities of death / survival
fit_age <-
glm(dead ~ age + I(age ^ 2) + low + high ,
data = resampled_data,
family = binomial(link = "cloglog"))
# predict px given the model
surv_low_m <- 1-predict(fit_age,data.frame(age=seq(50,110,2), low=1, high=0),type = "response")
surv_mid_m <- 1- predict(fit_age,data.frame(age=seq(50,110,2), low=0, high=0),type = "response")
surv_high_m <- 1- predict(fit_age,data.frame(age=seq(50,110,2), low=0, high=1),type = "response")
# last age group - no immortality
surv_low_m[length(surv_low_m)] <- 0
surv_mid_m[length(surv_mid_m)] <- 0
surv_high_m[length(surv_high_m)] <- 0
qx_low_m <- 1 - surv_low_m
qx_mid_m <- 1 - surv_mid_m
qx_high_m <- 1 - surv_high_m
### low edu -----------------------------------------------------------------
# simulate lifetimes
LT_low_m <- sim_lt(eqx=qx_low_m, eta=age, n=2)
# truncate LT to 90+
LT_low_m <- LT_low_m %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_low_m <- LT_low_m$ex[LT_low_m$age == 50]
wx_low_m <- wx %>%
filter(country == "Austria",
gender == "man",
edu == "low") %>%
pull(wx)
DFLE_low_m <- exDF(lx = LT_low_m$lx, wx = wx_low_m, Lx = LT_low_m$Lx)
DLE_low_m <- LE_low_m - DFLE_low_m
## mid edu -----------------------------------------------------------------
LT_mid_m <- sim_lt(eqx=qx_mid_m, eta=age, n=2)
LT_mid_m <- LT_mid_m %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_mid_m <- LT_mid_m$ex[LT_mid_m$age == 50]
wx_mid_m <- wx %>%
filter(country == "Austria",
gender == "man",
edu == "medium") %>%
pull(wx)
DFLE_mid_m <- exDF(lx = LT_mid_m$lx, wx = wx_mid_m, Lx = LT_mid_m$Lx)
DLE_mid_m <- LE_mid_m - DFLE_mid_m
## high edu -----------------------------------------------------------------
LT_high_m <- sim_lt(eqx=qx_high_m, eta=age, n=2)
LT_high_m <- LT_high_m %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_high_m <- LT_high_m$ex[LT_high_m$age == 50]
wx_high_m <- wx %>%
filter(country == "Austria",
gender == "man",
edu == "high") %>%
pull(wx)
DFLE_high_m <- exDF(lx = LT_high_m$lx, wx = wx_high_m, Lx = LT_high_m$Lx)
DLE_high_m <- LE_high_m - DFLE_high_m
# bind the results of each iteration in the object
results <- data.table(LE_low_m, DFLE_low_m, DLE_low_m,
LE_mid_m, DFLE_mid_m, DLE_mid_m,
LE_high_m, DFLE_high_m, DLE_high_m)
results
}
# keep results fixed between different runs, but different between iterations
, .options = furrr_options(seed = 1234)
)
men_dt <- rbindlist(men_start)
head(men_dt)
toc()
plan(sequential) # closing cores
### Conf Interv
# low
LE_low_m <- confidence_interval(men_dt$LE_low_m)
DFLE_low_m <- confidence_interval(men_dt$DFLE_low_m)
DLE_low_m <- confidence_interval(men_dt$DLE_low_m)
low_m <- as.data.frame(rbind(LE_low_m, DFLE_low_m, DLE_low_m)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Men",
edu = "low",
Expectancy = c("Total", "Disability-Free", "Disability")
) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# mid
LE_mid_m <- confidence_interval(men_dt$LE_mid_m)
DFLE_mid_m <- confidence_interval(men_dt$DFLE_mid_m)
DLE_mid_m <- confidence_interval(men_dt$DLE_mid_m)
mid_m <- as.data.frame(rbind(LE_mid_m, DFLE_mid_m, DLE_mid_m)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Men",
edu = "medium",
Expectancy = c("Total", "Disability-Free", "Disability")) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# high
LE_high_m <- confidence_interval(men_dt$LE_high_m)
DFLE_high_m <- confidence_interval(men_dt$DFLE_high_m)
DLE_high_m <- confidence_interval(men_dt$DLE_high_m)
high_m <- as.data.frame(rbind(LE_high_m, DFLE_high_m, DLE_high_m)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Men",
edu = "high",
Expectancy = c("Total", "Disability-Free", "Disability")) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# combine
men_ext <- as.data.frame(rbind(low_m, mid_m, high_m))
head(men_ext)
# Women -------------------------------------------------------------------
women_start <- c()
tic() # for time monitoring
plan(multisession, workers = 10) # if more cores chosen, process becomes slower
# plan(sequential) # if run locally, instead of servers
women_start <- 1:bs_it %>% furrr::future_map(~ { # ~ everything on the left
age <- seq(50, 110, 2) # panel structure
resampled_data <- long_resample(dat=dtf, id= "mergeid", time= "wave")
###- prevalence vector preparation -###
labels <- c(seq(50, 90, 2))
prevalence <- resampled_data %>%
mutate(
age = cut(
age,
breaks = c(seq(50, 90, by = 2), 120),
labels = labels,
right = FALSE
),
edu = factor(edu, levels = c("low", "medium", "high")),
gender = factor(gender, levels = c("woman", "man"))
) %>%
filter(gali != 99 # we estimate prevalence among alive only
)
## By GALI
wx <- prevalence %>%
group_by(country, gender, edu, age) %>%
mutate(wx = mean(gali)) %>%
ungroup() %>%
select(country, gender, edu, age, wx) %>%
distinct() %>%
arrange(country,gender, edu, age)
# discrete-time models - probabilities of death / survival
fit_age <-
glm(dead ~ age + I(age ^ 2) + low + high ,
data = resampled_data,
family = binomial(link = "cloglog"))
# predict px given the model
surv_low_f <- 1-predict(fit_age,data.frame(age=seq(50,110,2), low=1, high=0),type = "response")
surv_mid_f <- 1- predict(fit_age,data.frame(age=seq(50,110,2), low=0, high=0),type = "response")
surv_high_f <- 1- predict(fit_age,data.frame(age=seq(50,110,2), low=0, high=1),type = "response")
# last age group - no immortality
surv_low_f[length(surv_low_f)] <- 0
surv_mid_f[length(surv_mid_f)] <- 0
surv_high_f[length(surv_high_f)] <- 0
qx_low_f <- 1 - surv_low_f
qx_mid_f <- 1 - surv_mid_f
qx_high_f <- 1 - surv_high_f
### low edu -----------------------------------------------------------------
# simulate lifetimes
LT_low_f <- sim_lt(eqx=qx_low_f, eta=age, n=2)
# truncate LT to 90+
LT_low_f <- LT_low_f %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_low_f <- LT_low_f$ex[LT_low_f$age == 50]
wx_low_f <- wx %>%
filter(country == "Austria",
gender == "woman",
edu == "low") %>%
pull(wx)
DFLE_low_f <- exDF(lx = LT_low_f$lx, wx = wx_low_f, Lx = LT_low_f$Lx)
DLE_low_f <- LE_low_f - DFLE_low_f
## mid edu -----------------------------------------------------------------
LT_mid_f <- sim_lt(eqx=qx_mid_f, eta=age, n=2)
LT_mid_f <- LT_mid_f %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_mid_f <- LT_mid_f$ex[LT_mid_f$age == 50]
wx_mid_f <- wx %>%
filter(country == "Austria",
gender == "woman",
edu == "medium") %>%
pull(wx)
DFLE_mid_f <- exDF(lx = LT_mid_f$lx, wx = wx_mid_f, Lx = LT_mid_f$Lx)
DLE_mid_f <- LE_mid_f - DFLE_mid_f
## high edu -----------------------------------------------------------------
LT_high_f <- sim_lt(eqx=qx_high_f, eta=age, n=2)
LT_high_f <- LT_high_f %>%
filter(age<=90) %>%
mutate(Lx=ifelse(Lx==tail(Lx, 1), yes=Tx, no=Lx))
LE_high_f <- LT_high_f$ex[LT_high_f$age == 50]
wx_high_f <- wx %>%
filter(country == "Austria",
gender == "woman",
edu == "high") %>%
pull(wx)
DFLE_high_f <- exDF(lx = LT_high_f$lx, wx = wx_high_f, Lx = LT_high_f$Lx)
DLE_high_f <- LE_high_f - DFLE_high_f
# bind the results of each iteration in the object
results <- data.table(LE_low_f, DFLE_low_f, DLE_low_f,
LE_mid_f, DFLE_mid_f, DLE_mid_f,
LE_high_f, DFLE_high_f, DLE_high_f)
results
}
# keep results fixed between different runs, but different between iterations
, .options = furrr_options(seed = 1234)
)
women_dt <- rbindlist(women_start)
head(women_dt)
toc()
plan(sequential) # closing cores
### Confidence Intervals
# low
LE_low_f <- confidence_interval(women_dt$LE_low_f)
DFLE_low_f <- confidence_interval(women_dt$DFLE_low_f)
DLE_low_f <- confidence_interval(women_dt$DLE_low_f)
low_f <- as.data.frame(rbind(LE_low_f, DFLE_low_f, DLE_low_f)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Women",
edu = "low",
Expectancy = c("Total", "Disability-Free", "Disability")
) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# mid
LE_mid_f <- confidence_interval(women_dt$LE_mid_f)
DFLE_mid_f <- confidence_interval(women_dt$DFLE_mid_f)
DLE_mid_f <- confidence_interval(women_dt$DLE_mid_f)
mid_f <- as.data.frame(rbind(LE_mid_f, DFLE_mid_f, DLE_mid_f)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Women",
edu = "medium",
Expectancy = c("Total", "Disability-Free", "Disability")) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# high
LE_high_f <- confidence_interval(women_dt$LE_high_f)
DFLE_high_f <- confidence_interval(women_dt$DFLE_high_f)
DLE_high_f <- confidence_interval(women_dt$DLE_high_f)
high_f <- as.data.frame(rbind(LE_high_f, DFLE_high_f, DLE_high_f)) %>%
mutate(
estimate = V1,
lower = `2.5%`,
upper = `97.5%`,
country = "Austria",
gender = "Women",
edu = "high",
Expectancy = c("Total", "Disability-Free", "Disability")) %>%
select(country, gender, edu, Expectancy, estimate, lower, upper)
# combine
women_ext <- as.data.frame(rbind(low_f, mid_f, high_f))
head(women_ext)
# both genders
AUT <- rbind(men_ext, women_ext)
# save it in "Results" folder
write.csv(AUT, "directory_name", row.names = FALSE)