-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransforms.py
420 lines (366 loc) · 18.9 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# SPDX-FileCopyrightText: Copyright 2024 German Cancer Research Center (DKFZ) and contributors.
# SPDX-License-Identifier: Apache-2.0
import math
import random
from collections.abc import Hashable
from typing import Dict, List, Tuple, Optional
import monai.transforms as mt
from monai.transforms.spatial.functional import rotate
import torch
from autopet3.datacentric.utils import get_file_dict_nn, read_split
import os
import numpy as np
class CustomSampleCropd(mt.Transform):
def __init__(
self,
keys: List[str],
label_key: str,
roi_size: Tuple,
border_pad: Tuple[int, int, int] = (64, 80, 56),
return_pad: bool = False,
prob: float = 0.5,
):
"""Custom sampling class for sampling foreground and background samples.
Args:
keys (List[str]): List of keys.
label_key (str): Key for labels.
roi_size (Tuple[int, int, int]): Size of the ROI.
border_pad (Tuple[int, int, int], optional): Padding for borders. Defaults to (64, 80, 56).
return_pad (bool, optional): Flag to return padding. Defaults to False.
prob (float, optional): Probability. Defaults to 0.5.
"""
self.keys = keys
self.label_key = label_key
self.roi_size = roi_size
self.prob = prob
self.return_pad = return_pad
self.crop_content = mt.CropForegroundd(keys=self.keys, source_key="ct", allow_smaller=True)
self.pad = mt.BorderPadd(keys=self.keys, spatial_border=border_pad)
self.rand_crop = mt.RandSpatialCropd(keys=self.keys, roi_size=self.roi_size)
self.foreground_crop = mt.RandCropByPosNegLabeld(
keys=self.keys, label_key=self.label_key, spatial_size=self.roi_size, pos=1.0, neg=0.0, num_samples=1
)
def __call__(self, data: Dict[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]:
label = data[self.label_key]
data = self.crop_content(data)
data = self.pad(data)
if self.return_pad:
return data
if torch.any(label) and random.random() > self.prob:
return self.foreground_crop(data)[0]
return self.rand_crop(data)
class Unpackd(mt.Transform):
def __init__(self, keys: List[str]):
"""Unpackd is a transform that extracts specified keys from a dictionary and returns them as a tuple.
Args:
keys (List[str]): The keys to extract from the dictionary.
Returns:
tuple: A tuple containing the values corresponding to the specified keys.
"""
self.keys = keys
def __call__(self, data: Dict[Hashable, torch.Tensor]) -> tuple:
return tuple([data[k] for k in self.keys])
def crop_tensor(input_tensor, center, crop_size, pad_mode='constant', pad_kwargs=None):
"""
Crops and pads an input tensor based on the specified center and crop size. Padding can be customized.
Parameters:
- input_tensor (torch.Tensor): The input tensor with shape (c, x, y) or (c, x, y, z).
- center (tuple): The center coordinates of the crop (x, y) or (x, y, z).
- crop_size (tuple): The size of the crop (width, height) or (width, height, depth).
- pad_mode (str): The mode to use for padding (see torch.nn.functional.pad documentation).
- pad_kwargs (dict, optional): Additional keyword arguments for padding.
Returns:
- torch.Tensor: The cropped and possibly padded tensor.
Reference: taken from batchgenerators v2 https://github.com/MIC-DKFZ/batchgenerators
"""
if pad_kwargs is None:
pad_kwargs = {'value': 0}
# Calculate dimensions
dim = len(center) # Spatial dimensions
assert len(crop_size) == dim, "Crop size and center must have the same number of dimensions"
assert input_tensor.ndim - 1 == dim, "Crop size and input_tensor must have the same number of spatial dimensions"
spatial_shape = input_tensor.shape[-dim:]
start = [max(0, cen - cs // 2) for cen, cs in zip(center, crop_size)]
end = [min(sh, st + cs) for sh, st, cs in zip(spatial_shape, start, crop_size)]
# Calculate padding
padding_needed = [(cs - (e - s)) for cs, s, e in zip(crop_size, start, end)]
pad_before = [max(0, - (cen - cs // 2)) for cen, cs in zip(center, crop_size)]
pad_after = [pn - pb for pn, pb in zip(padding_needed, pad_before)]
# Adjust start and end for the case where the crop is entirely outside the input tensor
start = [min(max(0, s), sh) for s, sh in zip(start, spatial_shape)]
end = [max(min(e, sh), 0) for e, sh in zip(end, spatial_shape)]
# Perform crop
slices = [slice(None)] + [slice(s, e) for s, e in zip(start, end)]
cropped = input_tensor[tuple(slices)]
# Pad
pad_width = sum([[b, a] for b, a in zip(pad_before[::-1], pad_after[::-1])], [])
if any(pad_width):
cropped = torch.nn.functional.pad(cropped, pad_width, mode=pad_mode, **pad_kwargs)
return cropped
# A custom monai transform called Misalign that randomly shifts the selected channel(s) of the input data
# by a random number of pixels in the range [-max_shift, max_shift], different for all directions. This transform is useful for data augmentation
# in the context of PET/CT image registration, where the PET and CT images may be misaligned.
class Misalign(mt.Transform):
def __init__(self, keys2misalign: List[str] = ["ct"],
max_rotation_sag_cor_ax: Tuple[float, ...] = (5, 5, 5),
rad_or_deg: str = "deg",
prob_rot: float = 0.1,
max_shiftXYZ: Tuple[int, ...] = (2, 2, 1),
prob_shift: float = 0.1):
"""Misalign is a transform that randomly shifts the selected channel(s) of the input data by a random number of pixels in the range [-max_shift, max_shift].
Args:
keys (List[str]): List of keys to apply the transform.
max_shift (int): Maximum shifts in pixels. Defaults to (0, 2, 2).
prob (float): Probability of applying the transform. Defaults to 0.1.
"""
self.keys = keys2misalign
if rad_or_deg == "rad":
if any(rot > np.pi for rot in max_rotation_sag_cor_ax):
raise ValueError("The rotation is probably in deg or bigger than 180°")
self.max_rotation_sag_cor_ax = max_rotation_sag_cor_ax
elif rad_or_deg == "deg":
self.max_rotation_sag_cor_ax = [rot/360*(2*np.pi) for rot in max_rotation_sag_cor_ax]
else:
raise RuntimeError('Please define the rad_or_deg: "rad"/"deg"')
self.prob_rot = prob_rot
self.max_shift = max_shiftXYZ
self.prob_shift = prob_shift
def __call__(self, data):
shape = data['ct'].shape[1:]
# print(shape)
# print(self.max_shift)
do_rot = random.random() < self.prob_rot
do_shift = random.random() < self.prob_shift
if do_rot:
print("Rotating")
rot_angles = [random.uniform(-a, a) for a in self.max_rotation_sag_cor_ax]
print("Rotating by", rot_angles)
for ch in self.keys:
data[ch] = rotate(data[ch],
angle=rot_angles,
output_shape=shape,
mode='bilinear',
padding_mode='zeros',
align_corners=False,
dtype=None,
lazy=False,
transform_info=None)
print(data[ch].shape)
if do_shift:
center_location_in_pixels = []
for d in range(3):
center_location_in_pixels.append(shape[d] / 2 + random.randint(self.max_shift[d], self.max_shift[d]))
# print("Old image center", [i / 2 for i in shape])
# print("New image center", center_location_in_pixels)
for ch in self.keys:
# print(ch)
# print(data[ch].shape)
# print("Output shape from function crop_tensor:", crop_tensor(data[ch], [math.floor(i) for i in center_location_in_pixels],
# shape, pad_mode='constant', pad_kwargs={'value': 0}).shape)
data[ch] = crop_tensor(data[ch], [math.floor(i) for i in center_location_in_pixels],
shape, pad_mode='constant', pad_kwargs={'value': 0})
return data
# ------------------------------------------------------------------------------------------------
def get_transforms(
stage: str,
target_shape: Tuple,
resample: bool = False,
load: bool = True,
spacing: Tuple[float, float, float] = (2.0364201068878174, 2.0364201068878174, 3.0),
ct_percentiles: Tuple[float, float] = (-832.062744140625, 1127.758544921875),
pet_percentiles: Tuple[float, float] = (1.0433332920074463, 51.211158752441406),
pet_norm: torch.Tensor = torch.Tensor((7.063827929027176, 7.960414805306728)),
ct_norm: torch.Tensor = torch.Tensor((107.73438968591431, 286.34403119451997)),
do_misalign: bool = False,
max_rotation_sag_cor_ax=(5, 5, 5), rad_or_deg="deg", prob_rot=0.1,
max_shiftXYZ=(2, 2, 1), prob_shift=0.1,
do_random_other_transforms: bool = True,
transforms_name: Optional[str] = None,
) -> mt.Compose:
"""The get_transforms function generates a series of transforms based on the stage and target shape.
It performs loading, resampling, shifting intensity ranges, and applying various augmentation techniques such
as affine transforms, noise, blur, intensity adjustments, flips, and more. It also performs normalization and
concatenates the transformed data into a single tensor.
Args:
stage (str): The stage of the transformation (e.g., "train", "val", "val2", "val_sampled").
target_shape (Tuple[int, int, int]): The target shape of the transformation.
resample (bool): Flag indicating whether resampling should be performed.
load (bool): Flag indicating whether loading should be performed.
spacing (Tuple[float, float, float]): The spacing for resampling.
ct_percentiles (Tuple[float, float]): The percentiles for CT normalization.
pet_percentiles (Tuple[float, float]): The percentiles for PET normalization.
pet_norm (torch.Tensor): The normalization factor for PET.
ct_norm (torch.Tensor): The normalization factor for CT.
Returns:
mt.Compose: A composed set of transforms.
"""
input_keys = ["ct", "pet"]
if stage in ["train", "val", "val2", "val_sampled"]:
keys = ["ct", "pet", "label"]
out = ["image", "label"]
mode = ("bilinear", "bilinear", "nearest")
else:
keys = ["ct", "pet"]
out = ["image"]
mode = ("bilinear", "bilinear")
# Define a list to store all the transforms
all_transforms = []
# loading
if load:
load_transforms = [
mt.LoadImaged(keys=keys),
mt.EnsureChannelFirstd(keys=keys),
mt.EnsureTyped(keys=keys),
]
all_transforms.extend(load_transforms)
if resample:
# resampling
sample_transforms = [
mt.Orientationd(keys=keys, axcodes="LAS"), # RAS
mt.Spacingd(
keys=keys,
pixdim=spacing,
mode=mode,
),
]
all_transforms.extend(sample_transforms)
# shift ct and pet in value range 0 to 1 for transforms to work properly eg zero padding
shift_transforms = [
mt.ScaleIntensityRanged(
keys=["ct"], a_min=ct_percentiles[0], a_max=ct_percentiles[1], b_min=0, b_max=1, clip=True
),
mt.ScaleIntensityRanged(
keys=["pet"], a_min=pet_percentiles[0], a_max=pet_percentiles[1], b_min=0, b_max=1, clip=True
),
]
all_transforms.extend(shift_transforms)
if stage == "train":
if do_misalign:
misalign_transforms = [
# Misalign first the modalities:
Misalign(keys2misalign=["ct"],
max_rotation_sag_cor_ax=max_rotation_sag_cor_ax, rad_or_deg=rad_or_deg, prob_rot=prob_rot,
max_shiftXYZ=max_shiftXYZ, prob_shift=prob_shift),
]
all_transforms.extend(misalign_transforms)
other_transforms = [
# pad to target shape times 1.2 times sqrt(2) (because of affine transforms) and sample 50% a class
# foreground part, after that apply affine transform and crop
mt.SpatialPadd(keys=keys, spatial_size=tuple(int(math.sqrt(2) * x * 1.2) for x in target_shape)),
CustomSampleCropd(
keys=keys, label_key="label", roi_size=tuple(int(math.sqrt(2) * x * 1.2) for x in target_shape)
),
mt.RandAffined(
keys=keys,
mode=mode,
prob=0.2,
spatial_size=target_shape,
translate_range=(20, 20, 20),
rotate_range=(0.52, 0.52, 0.52),
scale_range=((-0.3, 0.4), (-0.3, 0.4), (-0.3, 0.4)),
padding_mode="zeros",
),
# noise, blur, intensity and flips
mt.RandGaussianNoised(keys=input_keys, std=0.1, prob=0.15),
mt.RandGaussianSmoothd(
keys=input_keys,
sigma_x=(0.5, 1),
sigma_y=(0.5, 1),
sigma_z=(0.5, 1),
prob=0.2,
),
mt.RandScaleIntensityd(keys=input_keys, factors=0.25, prob=0.15),
mt.RandSimulateLowResolutiond(keys=input_keys, zoom_range=(0.5, 1), prob=0.25),
mt.RandAdjustContrastd(keys=input_keys, gamma=(0.7, 1.5), invert_image=True, retain_stats=True, prob=0.1),
mt.RandAdjustContrastd(keys=input_keys, gamma=(0.7, 1.5), invert_image=False, retain_stats=True, prob=0.3),
mt.RandFlipd(keys=keys, spatial_axis=[0], prob=0.5),
mt.RandFlipd(keys=keys, spatial_axis=[1], prob=0.5),
mt.RandFlipd(keys=keys, spatial_axis=[2], prob=0.5),
]
if transforms_name is None:
if do_random_other_transforms:
all_transforms.extend(other_transforms)
# else do not apply other transforms
elif isinstance(transforms_name, str):
# overwrite default transforms with custom ones
if transforms_name == "custom_v1":
other_transforms = [
# pad to target shape times 1.2 times sqrt(2) (because of affine transforms) and sample 50% a class
# foreground part, after that apply affine transform and crop
mt.SpatialPadd(keys=keys, spatial_size=tuple(int(math.sqrt(2) * x * 1.2) for x in target_shape)),
CustomSampleCropd(
keys=keys, label_key="label", roi_size=tuple(int(math.sqrt(2) * x * 1.2) for x in target_shape)
),
mt.RandAffined(
keys=keys,
mode=mode,
prob=0.2,
spatial_size=target_shape,
translate_range=(10, 10, 10),
rotate_range=(0.3, 0.3, 0.3),
scale_range=((-0.2, 0.2), (-0.2, 0.2), (-0.2, 0.2)),
padding_mode="zeros",
), # adjust hyperparameters for less aggressive augmentations
# noise, blur, intensity and flips
mt.RandGaussianNoised(keys=input_keys, std=0.05, prob=0.2), # adjust std for less noise
# (remove random gaussian noise to avoid blurring small lesions)
mt.RandScaleIntensityd(keys=input_keys, factors=0.25, prob=0.15),
mt.RandSimulateLowResolutiond(keys=input_keys, zoom_range=(0.5, 1), prob=0.25),
# (remove random adjust contrast with invert_image=True to avoid overexposure)
mt.RandAdjustContrastd(keys=input_keys, gamma=(0.7, 1.5), invert_image=False, retain_stats=True, prob=0.3),
mt.RandFlipd(keys=keys, spatial_axis=[0], prob=0.5),
mt.RandFlipd(keys=keys, spatial_axis=[1], prob=0.5),
mt.RandFlipd(keys=keys, spatial_axis=[2], prob=0.5),
]
all_transforms.extend(other_transforms)
elif transforms_name == "default":
all_transforms.extend(other_transforms)
else:
raise ValueError("Unknown transforms_name")
elif stage == "val_sampled":
other_transforms = [
mt.SpatialPadd(keys=keys, spatial_size=target_shape),
CustomSampleCropd(keys=keys, label_key="label", roi_size=target_shape),
]
all_transforms.extend(other_transforms)
elif stage == "val":
other_transforms = [
mt.SpatialPadd(keys=keys, spatial_size=target_shape),
]
all_transforms.extend(other_transforms)
normalization_transforms = [
# shift ct and pet range back to original and clip (again)
mt.ScaleIntensityRanged(
keys=["ct"], a_min=0, a_max=1, b_min=ct_percentiles[0], b_max=ct_percentiles[1], clip=True
),
mt.ScaleIntensityRanged(
keys=["pet"], a_min=0, a_max=1, b_min=pet_percentiles[0], b_max=pet_percentiles[1], clip=True
),
mt.NormalizeIntensityd(keys=["ct"], subtrahend=ct_norm[0], divisor=ct_norm[1]),
mt.NormalizeIntensityd(keys=["pet"], subtrahend=pet_norm[0], divisor=pet_norm[1]),
]
all_transforms.extend(normalization_transforms)
final_transforms = [
mt.ConcatItemsd(keys=input_keys, name="image", dim=0),
mt.EnsureTyped(keys=keys),
mt.ToTensord(keys=keys),
Unpackd(keys=out), # unpack dict, pickable version
]
all_transforms.extend(final_transforms)
return mt.Compose(all_transforms)
if __name__ == "__main__":
# Test the transforms
from autopet3.fixed.utils import plot_ct_pet_label
root_dir = "/path/to/miccai2024_autopet3_datacentric"
split = read_split(os.path.join(root_dir, "test/data/splits_final.json"), 0)
test_sample = get_file_dict_nn(os.path.join(root_dir,"test/data/"), split["train"], suffix=".nii.gz")[0]
print("test sample:", test_sample)
transform = get_transforms(stage="train", resample=True, target_shape=(112, 160, 128) ,do_misalign=False, do_random_other_transforms=False)
transform_misalign = get_transforms(stage="train", resample=True, target_shape=(112, 160, 128), do_misalign=True, do_random_other_transforms=False)
res = transform(test_sample)
res_misalign = transform_misalign(test_sample)
plot_ct_pet_label(ct=res[0][0], pet=res[0][1], label=res[1])
plot_ct_pet_label(ct=res_misalign[0][0], pet=res_misalign[0][1], label=res_misalign[1])
transform = get_transforms(stage="val_sampled", resample=False, target_shape=(112, 160, 128))
res = transform(test_sample)
plot_ct_pet_label(ct=res[0][0], pet=res[0][1], label=res[1])