forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathohem_cross_entropy_loss.py
94 lines (80 loc) · 3.4 KB
/
ohem_cross_entropy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Union
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from mmseg.registry import MODELS
@MODELS.register_module()
class OhemCrossEntropy(nn.Module):
"""OhemCrossEntropy loss.
This func is modified from
`PIDNet <https://github.com/XuJiacong/PIDNet/blob/main/utils/criterion.py#L43>`_. # noqa
Licensed under the MIT License.
Args:
ignore_label (int): Labels to ignore when computing the loss.
Default: 255
thresh (float, optional): The threshold for hard example selection.
Below which, are prediction with low confidence. If not
specified, the hard examples will be pixels of top ``min_kept``
loss. Default: 0.7.
min_kept (int, optional): The minimum number of predictions to keep.
Default: 100000.
loss_weight (float): Weight of the loss. Defaults to 1.0.
class_weight (list[float] | str, optional): Weight of each class. If in
str format, read them from a file. Defaults to None.
loss_name (str): Name of the loss item. If you want this loss
item to be included into the backward graph, `loss_` must be the
prefix of the name. Defaults to 'loss_boundary'.
"""
def __init__(self,
ignore_label: int = 255,
thres: float = 0.7,
min_kept: int = 100000,
loss_weight: float = 1.0,
class_weight: Optional[Union[List[float], str]] = None,
loss_name: str = 'loss_ohem'):
super().__init__()
self.thresh = thres
self.min_kept = max(1, min_kept)
self.ignore_label = ignore_label
self.loss_weight = loss_weight
self.loss_name_ = loss_name
self.class_weight = class_weight
def forward(self, score: Tensor, target: Tensor) -> Tensor:
"""Forward function.
Args:
score (Tensor): Predictions of the segmentation head.
target (Tensor): Ground truth of the image.
Returns:
Tensor: Loss tensor.
"""
# score: (N, C, H, W)
pred = F.softmax(score, dim=1)
if self.class_weight is not None:
class_weight = score.new_tensor(self.class_weight)
else:
class_weight = None
pixel_losses = F.cross_entropy(
score,
target,
weight=class_weight,
ignore_index=self.ignore_label,
reduction='none').contiguous().view(-1) # (N*H*W)
mask = target.contiguous().view(-1) != self.ignore_label # (N*H*W)
tmp_target = target.clone() # (N, H, W)
tmp_target[tmp_target == self.ignore_label] = 0
# pred: (N, C, H, W) -> (N*H*W, C)
pred = pred.gather(1, tmp_target.unsqueeze(1))
# pred: (N*H*W, C) -> (N*H*W), ind: (N*H*W)
pred, ind = pred.contiguous().view(-1, )[mask].contiguous().sort()
if pred.numel() > 0:
min_value = pred[min(self.min_kept, pred.numel() - 1)]
else:
return score.new_tensor(0.0)
threshold = max(min_value, self.thresh)
pixel_losses = pixel_losses[mask][ind]
pixel_losses = pixel_losses[pred < threshold]
return self.loss_weight * pixel_losses.mean()
@property
def loss_name(self):
return self.loss_name_