forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsan_head.py
736 lines (663 loc) · 29.9 KB
/
san_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, build_norm_layer
from mmcv.cnn.bricks.transformer import BaseTransformerLayer
from mmcv.ops import point_sample
from mmengine.dist import all_reduce
from mmengine.model.weight_init import (caffe2_xavier_init, normal_init,
trunc_normal_)
from mmengine.runner.checkpoint import CheckpointLoader, load_state_dict
from mmengine.structures import InstanceData
from torch import Tensor
from torch.nn import functional as F
from mmseg.models.backbones.vit import TransformerEncoderLayer
from mmseg.registry import MODELS
from mmseg.utils import (ConfigType, MatchMasks, SampleList,
seg_data_to_instance_data)
from ..utils import (MLP, LayerNorm2d, PatchEmbed, cross_attn_layer,
get_uncertain_point_coords_with_randomness, resize)
from .decode_head import BaseDecodeHead
class MLPMaskDecoder(nn.Module):
"""Module for decoding query and visual features with MLP layers to
generate the attention biases and the mask proposals."""
def __init__(
self,
*,
in_channels: int,
total_heads: int = 1,
total_layers: int = 1,
embed_channels: int = 256,
mlp_channels: int = 256,
mlp_num_layers: int = 3,
rescale_attn_bias: bool = False,
):
super().__init__()
self.total_heads = total_heads
self.total_layers = total_layers
dense_affine_func = partial(nn.Conv2d, kernel_size=1)
# Query Branch
self.query_mlp = MLP(in_channels, mlp_channels, embed_channels,
mlp_num_layers)
# Pixel Branch
self.pix_mlp = MLP(
in_channels,
mlp_channels,
embed_channels,
mlp_num_layers,
affine_func=dense_affine_func,
)
# Attention Bias Branch
self.attn_mlp = MLP(
in_channels,
mlp_channels,
embed_channels * self.total_heads * self.total_layers,
mlp_num_layers,
affine_func=dense_affine_func,
)
if rescale_attn_bias:
self.bias_scaling = nn.Linear(1, 1)
else:
self.bias_scaling = nn.Identity()
def forward(self, query: torch.Tensor,
x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward function.
Args:
query (Tensor): Query Tokens [B,N,C].
x (Tensor): Visual features [B,C,H,W]
Return:
mask_preds (Tensor): Mask proposals.
attn_bias (List[Tensor]): List of attention bias.
"""
query = self.query_mlp(query)
pix = self.pix_mlp(x)
b, c, h, w = pix.shape
# preidict mask
mask_preds = torch.einsum('bqc,bchw->bqhw', query, pix)
# generate attn bias
attn = self.attn_mlp(x)
attn = attn.reshape(b, self.total_layers, self.total_heads, c, h, w)
attn_bias = torch.einsum('bqc,blnchw->blnqhw', query, attn)
attn_bias = self.bias_scaling(attn_bias[..., None]).squeeze(-1)
attn_bias = attn_bias.chunk(self.total_layers, dim=1)
attn_bias = [attn.squeeze(1) for attn in attn_bias]
return mask_preds, attn_bias
class SideAdapterNetwork(nn.Module):
"""Side Adapter Network for predicting mask proposals and attention bias.
Args:
in_channels (int): Number of input channels. Default: 3.
clip_channels (int): Number of channels of visual features.
Default: 768.
embed_dims (int): embedding dimension. Default: 240.
patch_size (int): The patch size. Default: 16.
patch_bias (bool): Whether use bias in patch embedding.
Default: True.
num_queries (int): Number of queries for mask proposals.
Default: 100.
fusion_index (List[int]): The layer number of the encode
transformer to fuse with the CLIP feature.
Default: [0, 1, 2, 3].
cfg_encoder (ConfigType): Configs for the encode layers.
cfg_decoder (ConfigType): Configs for the decode layers.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
"""
def __init__(
self,
in_channels: int = 3,
clip_channels: int = 768,
embed_dims: int = 240,
patch_size: int = 16,
patch_bias: bool = True,
num_queries: int = 100,
fusion_index: list = [0, 1, 2, 3],
cfg_encoder: ConfigType = ...,
cfg_decoder: ConfigType = ...,
norm_cfg: dict = dict(type='LN'),
):
super().__init__()
self.patch_embed = PatchEmbed(
in_channels=in_channels,
embed_dims=embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
padding=0,
input_size=(640, 640),
bias=patch_bias,
norm_cfg=None,
init_cfg=None,
)
ori_h, ori_w = self.patch_embed.init_out_size
num_patches = ori_h * ori_w
self.pos_embed = nn.Parameter(
torch.randn(1, num_patches, embed_dims) * .02)
self.query_pos_embed = nn.Parameter(
torch.zeros(1, num_queries, embed_dims))
self.query_embed = nn.Parameter(
torch.zeros(1, num_queries, embed_dims))
encode_layers = []
for i in range(cfg_encoder.num_encode_layer):
encode_layers.append(
TransformerEncoderLayer(
embed_dims=embed_dims,
num_heads=cfg_encoder.num_heads,
feedforward_channels=cfg_encoder.mlp_ratio * embed_dims,
norm_cfg=norm_cfg))
self.encode_layers = nn.ModuleList(encode_layers)
conv_clips = []
for i in range(len(fusion_index)):
conv_clips.append(
nn.Sequential(
LayerNorm2d(clip_channels),
ConvModule(
clip_channels,
embed_dims,
kernel_size=1,
norm_cfg=None,
act_cfg=None)))
self.conv_clips = nn.ModuleList(conv_clips)
self.fusion_index = fusion_index
self.mask_decoder = MLPMaskDecoder(
in_channels=embed_dims,
total_heads=cfg_decoder.num_heads,
total_layers=cfg_decoder.num_layers,
embed_channels=cfg_decoder.embed_channels,
mlp_channels=cfg_decoder.mlp_channels,
mlp_num_layers=cfg_decoder.num_mlp,
rescale_attn_bias=cfg_decoder.rescale)
def init_weights(self):
trunc_normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.query_embed, std=0.02)
nn.init.normal_(self.query_pos_embed, std=0.02)
for i in range(len(self.conv_clips)):
caffe2_xavier_init(self.conv_clips[i][1].conv)
def fuse_clip(self, fused_index: int, x: torch.Tensor,
clip_feature: torch.Tensor, hwshape: Tuple[int,
int], L: int):
"""Fuse CLIP feature and visual tokens."""
fused_clip = (resize(
self.conv_clips[fused_index](clip_feature.contiguous()),
size=hwshape,
mode='bilinear',
align_corners=False)).permute(0, 2, 3, 1).reshape(x[:, -L:,
...].shape)
x = torch.cat([x[:, :-L, ...], x[:, -L:, ...] + fused_clip], dim=1)
return x
def encode_feature(self, image: torch.Tensor,
clip_features: List[torch.Tensor],
deep_supervision_idxs: List[int]) -> List[List]:
"""Encode images by a lightweight vision transformer."""
assert len(self.fusion_index) == len(clip_features)
x, hwshape = self.patch_embed(image)
ori_h, ori_w = self.patch_embed.init_out_size
pos_embed = self.pos_embed
if self.pos_embed.shape[1] != x.shape[1]:
# resize the position embedding
pos_embed = (
resize(
self.pos_embed.reshape(1, ori_h, ori_w,
-1).permute(0, 3, 1, 2),
size=hwshape,
mode='bicubic',
align_corners=False,
).flatten(2).permute(0, 2, 1))
pos_embed = torch.cat([
self.query_pos_embed.expand(pos_embed.shape[0], -1, -1), pos_embed
],
dim=1)
x = torch.cat([self.query_embed.expand(x.shape[0], -1, -1), x], dim=1)
x = x + pos_embed
L = hwshape[0] * hwshape[1]
fused_index = 0
if self.fusion_index[fused_index] == 0:
x = self.fuse_clip(fused_index, x, clip_features[0][0], hwshape, L)
fused_index += 1
outs = []
for index, block in enumerate(self.encode_layers, start=1):
x = block(x)
if index < len(self.fusion_index
) and index == self.fusion_index[fused_index]:
x = self.fuse_clip(fused_index, x,
clip_features[fused_index][0], hwshape, L)
fused_index += 1
x_query = x[:, :-L, ...]
x_feat = x[:, -L:, ...].permute(0, 2, 1)\
.reshape(x.shape[0], x.shape[-1], hwshape[0], hwshape[1])
if index in deep_supervision_idxs or index == len(
self.encode_layers):
outs.append({'query': x_query, 'x': x_feat})
if index < len(self.encode_layers):
x = x + pos_embed
return outs
def decode_feature(self, features):
mask_embeds = []
attn_biases = []
for feature in features:
mask_embed, attn_bias = self.mask_decoder(**feature)
mask_embeds.append(mask_embed)
attn_biases.append(attn_bias)
return mask_embeds, attn_biases
def forward(
self, image: torch.Tensor, clip_features: List[torch.Tensor],
deep_supervision_idxs: List[int]
) -> Tuple[List[torch.Tensor], List[List[torch.Tensor]]]:
"""Forward function."""
features = self.encode_feature(image, clip_features,
deep_supervision_idxs)
mask_embeds, attn_biases = self.decode_feature(features)
return mask_embeds, attn_biases
class RecWithAttnbias(nn.Module):
"""Mask recognition module by applying the attention biases to rest deeper
CLIP layers.
Args:
sos_token_format (str): The format of sos token. It should be
chosen from ["cls_token", "learnable_token", "pos_embedding"].
Default: 'cls_token'.
sos_token_num (int): Number of sos token. It should be equal to
the number of quries. Default: 100.
num_layers (int): Number of rest CLIP layers for mask recognition.
Default: 3.
cross_attn (bool): Whether use cross attention to update sos token.
Default: False.
embed_dims (int): The feature dimension of CLIP layers.
Default: 768.
num_heads (int): Parallel attention heads of CLIP layers.
Default: 768.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
Default: 4.
qkv_bias (bool): Whether to use bias in multihead-attention.
Default: True.
out_dims (int): Number of channels of the output mask proposals.
It should be equal to the out_dims of text_encoder.
Default: 512.
final_norm (True): Whether use norm layer for sos token.
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
frozen_exclude (List): List of parameters that are not to be frozen.
"""
def __init__(self,
sos_token_format: str = 'cls_token',
sos_token_num: int = 100,
num_layers: int = 3,
cross_attn: bool = False,
embed_dims: int = 768,
num_heads: int = 12,
mlp_ratio: int = 4,
num_fcs: int = 2,
qkv_bias: bool = True,
out_dims: int = 512,
final_norm: bool = True,
act_cfg: dict = dict(type='GELU'),
norm_cfg: dict = dict(type='LN'),
frozen_exclude: List = []):
super().__init__()
assert sos_token_format in [
'cls_token', 'learnable_token', 'pos_embedding'
]
self.sos_token_format = sos_token_format
self.sos_token_num = sos_token_num
self.frozen_exclude = frozen_exclude
self.cross_attn = cross_attn
self.num_layers = num_layers
self.num_heads = num_heads
if sos_token_format in ['learnable_token', 'pos_embedding']:
self.sos_token = nn.Parameter(
torch.randn(sos_token_num, 1, self.proj.shape[0]))
self.frozen.append('sos_token')
layers = []
for i in range(num_layers):
layers.append(
BaseTransformerLayer(
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=embed_dims,
num_heads=num_heads,
batch_first=False,
bias=qkv_bias),
ffn_cfgs=dict(
type='FFN',
embed_dims=embed_dims,
feedforward_channels=mlp_ratio * embed_dims,
act_cfg=act_cfg),
operation_order=('norm', 'self_attn', 'norm', 'ffn')))
self.layers = nn.ModuleList(layers)
self.ln_post = build_norm_layer(norm_cfg, embed_dims)[1]
self.proj = nn.Linear(embed_dims, out_dims, bias=False)
self.final_norm = final_norm
self._freeze()
def init_weights(self, rec_state_dict):
if hasattr(self, 'sos_token'):
normal_init(self.sos_token, std=0.02)
if rec_state_dict is not None:
load_state_dict(self, rec_state_dict, strict=False, logger=None)
else:
super().init_weights()
def _freeze(self):
if 'all' in self.frozen_exclude:
return
for name, param in self.named_parameters():
if not any([exclude in name for exclude in self.frozen_exclude]):
param.requires_grad = False
def _build_attn_biases(self, attn_biases, target_shape):
formatted_attn_biases = []
for attn_bias in attn_biases:
# convert it to proper format: N*num_head,L,L
# attn_bias: [N, num_head/1, num_sos,H,W]
n, num_head, num_sos, h, w = attn_bias.shape
# reshape and downsample
attn_bias = F.adaptive_max_pool2d(
attn_bias.reshape(n, num_head * num_sos, h, w),
output_size=target_shape)
attn_bias = attn_bias.reshape(n, num_head, num_sos, *target_shape)
true_num_head = self.num_heads
assert (num_head == 1 or num_head
== true_num_head), f'num_head={num_head} is not supported.'
if num_head == 1:
attn_bias = attn_bias.repeat(1, true_num_head, 1, 1, 1)
attn_bias = attn_bias.reshape(n * true_num_head, num_sos, -1)
L = attn_bias.shape[-1]
if self.cross_attn:
# [n*num_head, num_sos, L]
formatted_attn_biases.append(attn_bias)
else:
# [n*num_head, num_sos+1+L, num_sos+1+L]
new_attn_bias = attn_bias.new_zeros(num_sos + 1 + L,
num_sos + 1 + L)
new_attn_bias[:, :num_sos] = -100
new_attn_bias[torch.arange(num_sos), torch.arange(num_sos)] = 0
new_attn_bias[:num_sos, num_sos] = -100
new_attn_bias = (
new_attn_bias[None, ...].expand(n * true_num_head, -1,
-1).clone())
new_attn_bias[..., :num_sos, -L:] = attn_bias
formatted_attn_biases.append(new_attn_bias)
if len(formatted_attn_biases) == 1:
formatted_attn_biases = [
formatted_attn_biases[0] for _ in range(self.num_layers)
]
return formatted_attn_biases
def forward(self, bias: List[Tensor], feature: List[Tensor]):
"""Forward function to recognize the category of masks
Args:
bias (List[Tensor]): Attention bias for transformer layers
feature (List[Tensor]): Output of the image encoder,
including cls_token and img_feature.
"""
cls_token = feature[1].unsqueeze(0)
img_feature = feature[0]
b, c, h, w = img_feature.shape
# construct clip shadow features
x = torch.cat(
[cls_token,
img_feature.reshape(b, c, -1).permute(2, 0, 1)])
# construct sos token
if self.sos_token_format == 'cls_token':
sos_token = cls_token.repeat(self.sos_token_num, 1, 1)
elif self.sos_token_format == 'learnable_token':
sos_token = self.sos_token.expand(-1, b, -1)
elif self.sos_token_format == 'pos_embedding':
sos_token = self.sos_token.expand(-1, b, -1) + cls_token
# construct attn bias
attn_biases = self._build_attn_biases(bias, target_shape=(h, w))
if self.cross_attn:
for i, block in enumerate(self.layers):
if self.cross_attn:
sos_token = cross_attn_layer(
block,
sos_token,
x[1:, ],
attn_biases[i],
)
if i < len(self.layers) - 1:
x = block(x)
else:
x = torch.cat([sos_token, x], dim=0)
for i, block in enumerate(self.layers):
x = block(x, attn_masks=[attn_biases[i]])
sos_token = x[:self.sos_token_num]
sos_token = sos_token.permute(1, 0, 2) # LND -> NLD
sos_token = self.ln_post(sos_token)
sos_token = self.proj(sos_token)
if self.final_norm:
sos_token = F.normalize(sos_token, dim=-1)
return sos_token
@MODELS.register_module()
class SideAdapterCLIPHead(BaseDecodeHead):
"""Side Adapter Network (SAN) for open-vocabulary semantic segmentation
with pre-trained vision-language model.
This decode head is the implementation of `Side Adapter Network
for Open-Vocabulary Semantic Segmentation`
<https://arxiv.org/abs/2302.12242>.
Modified from https://github.com/MendelXu/SAN/blob/main/san/model/side_adapter/side_adapter.py # noqa:E501
Copyright (c) 2023 MendelXu.
Licensed under the MIT License
Args:
num_classes (int): the number of classes.
san_cfg (ConfigType): Configs for SideAdapterNetwork module
maskgen_cfg (ConfigType): Configs for RecWithAttnbias module
"""
def __init__(self, num_classes: int, san_cfg: ConfigType,
maskgen_cfg: ConfigType, deep_supervision_idxs: List[int],
train_cfg: ConfigType, **kwargs):
super().__init__(
in_channels=san_cfg.in_channels,
channels=san_cfg.embed_dims,
num_classes=num_classes,
**kwargs)
assert san_cfg.num_queries == maskgen_cfg.sos_token_num, \
'num_queries in san_cfg should be equal to sos_token_num ' \
'in maskgen_cfg'
del self.conv_seg
self.side_adapter_network = SideAdapterNetwork(**san_cfg)
self.rec_with_attnbias = RecWithAttnbias(**maskgen_cfg)
self.deep_supervision_idxs = deep_supervision_idxs
self.train_cfg = train_cfg
if train_cfg:
self.match_masks = MatchMasks(
num_points=train_cfg.num_points,
num_queries=san_cfg.num_queries,
num_classes=num_classes,
assigner=train_cfg.assigner)
def init_weights(self):
rec_state_dict = None
if isinstance(self.init_cfg, dict) and \
self.init_cfg.get('type') == 'Pretrained_Part':
checkpoint = CheckpointLoader.load_checkpoint(
self.init_cfg['checkpoint'], logger=None, map_location='cpu')
rec_state_dict = checkpoint.copy()
para_prefix = 'decode_head.rec_with_attnbias'
prefix_len = len(para_prefix) + 1
for k, v in checkpoint.items():
rec_state_dict.pop(k)
if para_prefix in k:
rec_state_dict[k[prefix_len:]] = v
self.side_adapter_network.init_weights()
self.rec_with_attnbias.init_weights(rec_state_dict)
def forward(self, inputs: Tuple[Tensor],
deep_supervision_idxs) -> Tuple[List]:
"""Forward function.
Args:
inputs (Tuple[Tensor]): A triplet including images,
list of multi-level visual features from image encoder and
class embeddings from text_encoder.
Returns:
mask_props (List[Tensor]): Mask proposals predicted by SAN.
mask_logits (List[Tensor]): Class logits of mask proposals.
"""
imgs, clip_feature, class_embeds = inputs
# predict mask proposals and attention bias
mask_props, attn_biases = self.side_adapter_network(
imgs, clip_feature, deep_supervision_idxs)
# mask recognition with attention bias
mask_embeds = [
self.rec_with_attnbias(att_bias, clip_feature[-1])
for att_bias in attn_biases
]
# Obtain class prediction of masks by comparing the similarity
# between the image token and the text embedding of class names.
mask_logits = [
torch.einsum('bqc,nc->bqn', mask_embed, class_embeds)
for mask_embed in mask_embeds
]
return mask_props, mask_logits
def predict(self, inputs: Tuple[Tensor], batch_img_metas: List[dict],
test_cfg: ConfigType) -> Tensor:
"""Forward function for prediction.
Args:
inputs (Tuple[Tensor]): Images, visual features from image encoder
and class embedding from text encoder.
batch_img_metas (dict): List Image info where each dict may also
contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
test_cfg (dict): The testing config.
Returns:
Tensor: Outputs segmentation logits map.
"""
mask_props, mask_logits = self.forward(inputs, [])
return self.predict_by_feat([mask_props[-1], mask_logits[-1]],
batch_img_metas)
def predict_by_feat(self, seg_logits: List[Tensor],
batch_img_metas: List[dict]) -> Tensor:
"""1. Transform a batch of mask proposals to the input shape.
2. Generate segmentation map with mask proposals and class logits.
"""
mask_pred = seg_logits[0]
cls_score = seg_logits[1]
if isinstance(batch_img_metas[0]['img_shape'], torch.Size):
# slide inference
size = batch_img_metas[0]['img_shape']
elif 'pad_shape' in batch_img_metas[0]:
size = batch_img_metas[0]['pad_shape'][:2]
else:
size = batch_img_metas[0]['img_shape']
# upsample mask
mask_pred = F.interpolate(
mask_pred, size=size, mode='bilinear', align_corners=False)
mask_cls = F.softmax(cls_score, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
seg_logits = torch.einsum('bqc,bqhw->bchw', mask_cls, mask_pred)
return seg_logits
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList,
train_cfg: ConfigType) -> dict:
"""Perform forward propagation and loss calculation of the decoder head
on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the upstream
network, each is a 4D-tensor.
batch_data_samples (List[:obj:`SegDataSample`]): The Data
Samples. It usually includes information such as
`gt_sem_seg`.
train_cfg (ConfigType): Training config.
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
# batch SegDataSample to InstanceDataSample
batch_gt_instances = seg_data_to_instance_data(self.ignore_index,
batch_data_samples)
# forward
all_mask_props, all_mask_logits = self.forward(
x, self.deep_supervision_idxs)
# loss
losses = self.loss_by_feat(all_mask_logits, all_mask_props,
batch_gt_instances)
return losses
def loss_by_feat(
self, all_cls_scores: Tensor, all_mask_preds: Tensor,
batch_gt_instances: List[InstanceData]) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_cls_scores (Tensor): Classification scores for all decoder
layers with shape (num_decoder, batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should includes
background.
all_mask_preds (Tensor): Mask scores for all decoder layers with
shape (num_decoder, batch_size, num_queries, h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_dec_layers = len(all_cls_scores)
batch_gt_instances_list = [
batch_gt_instances for _ in range(num_dec_layers)
]
losses = []
for i in range(num_dec_layers):
cls_scores = all_cls_scores[i]
mask_preds = all_mask_preds[i]
# matching N mask predictions to K category labels
(labels, mask_targets, mask_weights,
avg_factor) = self.match_masks.get_targets(
cls_scores, mask_preds, batch_gt_instances_list[i])
cls_scores = cls_scores.flatten(0, 1)
labels = labels.flatten(0, 1)
num_total_masks = cls_scores.new_tensor([avg_factor],
dtype=torch.float)
all_reduce(num_total_masks, op='mean')
num_total_masks = max(num_total_masks, 1)
# extract positive ones
# shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
mask_preds = mask_preds[mask_weights > 0]
if mask_targets.shape[0] != 0:
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_preds.unsqueeze(1), None,
self.train_cfg.num_points,
self.train_cfg.oversample_ratio,
self.train_cfg.importance_sample_ratio)
# shape (num_total_gts, h, w)
# -> (num_total_gts, num_points)
mask_point_targets = point_sample(
mask_targets.unsqueeze(1).float(),
points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_preds.unsqueeze(1), points_coords).squeeze(1)
if not isinstance(self.loss_decode, nn.ModuleList):
losses_decode = [self.loss_decode]
else:
losses_decode = self.loss_decode
loss = dict()
for loss_decode in losses_decode:
if 'loss_cls' in loss_decode.loss_name:
if loss_decode.loss_name == 'loss_cls_ce':
loss[loss_decode.loss_name] = loss_decode(
cls_scores, labels)
else:
assert False, "Only support 'CrossEntropyLoss' in" \
' classification loss'
elif 'loss_mask' in loss_decode.loss_name:
if mask_targets.shape[0] == 0:
loss[loss_decode.loss_name] = mask_preds.sum()
elif loss_decode.loss_name == 'loss_mask_ce':
loss[loss_decode.loss_name] = loss_decode(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks *
self.train_cfg.num_points)
elif loss_decode.loss_name == 'loss_mask_dice':
loss[loss_decode.loss_name] = loss_decode(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks)
else:
assert False, "Only support 'CrossEntropyLoss' and" \
" 'DiceLoss' in mask loss"
else:
assert False, "Only support for 'loss_cls' and 'loss_mask'"
losses.append(loss)
loss_dict = dict()
# loss from the last decoder layer
loss_dict.update(losses[-1])
# loss from other decoder layers
for i, loss in enumerate(losses[:-1]):
for k, v in loss.items():
loss_dict[f'd{self.deep_supervision_idxs[i]}.{k}'] = v
return loss_dict