forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathham_head.py
255 lines (198 loc) · 8.1 KB
/
ham_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) OpenMMLab. All rights reserved.
# Originally from https://github.com/visual-attention-network/segnext
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.device import get_device
from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
class Matrix_Decomposition_2D_Base(nn.Module):
"""Base class of 2D Matrix Decomposition.
Args:
MD_S (int): The number of spatial coefficient in
Matrix Decomposition, it may be used for calculation
of the number of latent dimension D in Matrix
Decomposition. Defaults: 1.
MD_R (int): The number of latent dimension R in
Matrix Decomposition. Defaults: 64.
train_steps (int): The number of iteration steps in
Multiplicative Update (MU) rule to solve Non-negative
Matrix Factorization (NMF) in training. Defaults: 6.
eval_steps (int): The number of iteration steps in
Multiplicative Update (MU) rule to solve Non-negative
Matrix Factorization (NMF) in evaluation. Defaults: 7.
inv_t (int): Inverted multiple number to make coefficient
smaller in softmax. Defaults: 100.
rand_init (bool): Whether to initialize randomly.
Defaults: True.
"""
def __init__(self,
MD_S=1,
MD_R=64,
train_steps=6,
eval_steps=7,
inv_t=100,
rand_init=True):
super().__init__()
self.S = MD_S
self.R = MD_R
self.train_steps = train_steps
self.eval_steps = eval_steps
self.inv_t = inv_t
self.rand_init = rand_init
def _build_bases(self, B, S, D, R, device=None):
raise NotImplementedError
def local_step(self, x, bases, coef):
raise NotImplementedError
def local_inference(self, x, bases):
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
coef = torch.bmm(x.transpose(1, 2), bases)
coef = F.softmax(self.inv_t * coef, dim=-1)
steps = self.train_steps if self.training else self.eval_steps
for _ in range(steps):
bases, coef = self.local_step(x, bases, coef)
return bases, coef
def compute_coef(self, x, bases, coef):
raise NotImplementedError
def forward(self, x, return_bases=False):
"""Forward Function."""
B, C, H, W = x.shape
# (B, C, H, W) -> (B * S, D, N)
D = C // self.S
N = H * W
x = x.view(B * self.S, D, N)
if not self.rand_init and not hasattr(self, 'bases'):
bases = self._build_bases(1, self.S, D, self.R, device=x.device)
self.register_buffer('bases', bases)
# (S, D, R) -> (B * S, D, R)
if self.rand_init:
bases = self._build_bases(B, self.S, D, self.R, device=x.device)
else:
bases = self.bases.repeat(B, 1, 1)
bases, coef = self.local_inference(x, bases)
# (B * S, N, R)
coef = self.compute_coef(x, bases, coef)
# (B * S, D, R) @ (B * S, N, R)^T -> (B * S, D, N)
x = torch.bmm(bases, coef.transpose(1, 2))
# (B * S, D, N) -> (B, C, H, W)
x = x.view(B, C, H, W)
return x
class NMF2D(Matrix_Decomposition_2D_Base):
"""Non-negative Matrix Factorization (NMF) module.
It is inherited from ``Matrix_Decomposition_2D_Base`` module.
"""
def __init__(self, args=dict()):
super().__init__(**args)
self.inv_t = 1
def _build_bases(self, B, S, D, R, device=None):
"""Build bases in initialization."""
if device is None:
device = get_device()
bases = torch.rand((B * S, D, R)).to(device)
bases = F.normalize(bases, dim=1)
return bases
def local_step(self, x, bases, coef):
"""Local step in iteration to renew bases and coefficient."""
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
numerator = torch.bmm(x.transpose(1, 2), bases)
# (B * S, N, R) @ [(B * S, D, R)^T @ (B * S, D, R)] -> (B * S, N, R)
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases))
# Multiplicative Update
coef = coef * numerator / (denominator + 1e-6)
# (B * S, D, N) @ (B * S, N, R) -> (B * S, D, R)
numerator = torch.bmm(x, coef)
# (B * S, D, R) @ [(B * S, N, R)^T @ (B * S, N, R)] -> (B * S, D, R)
denominator = bases.bmm(coef.transpose(1, 2).bmm(coef))
# Multiplicative Update
bases = bases * numerator / (denominator + 1e-6)
return bases, coef
def compute_coef(self, x, bases, coef):
"""Compute coefficient."""
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
numerator = torch.bmm(x.transpose(1, 2), bases)
# (B * S, N, R) @ (B * S, D, R)^T @ (B * S, D, R) -> (B * S, N, R)
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases))
# multiplication update
coef = coef * numerator / (denominator + 1e-6)
return coef
class Hamburger(nn.Module):
"""Hamburger Module. It consists of one slice of "ham" (matrix
decomposition) and two slices of "bread" (linear transformation).
Args:
ham_channels (int): Input and output channels of feature.
ham_kwargs (dict): Config of matrix decomposition module.
norm_cfg (dict | None): Config of norm layers.
"""
def __init__(self,
ham_channels=512,
ham_kwargs=dict(),
norm_cfg=None,
**kwargs):
super().__init__()
self.ham_in = ConvModule(
ham_channels, ham_channels, 1, norm_cfg=None, act_cfg=None)
self.ham = NMF2D(ham_kwargs)
self.ham_out = ConvModule(
ham_channels, ham_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
def forward(self, x):
enjoy = self.ham_in(x)
enjoy = F.relu(enjoy, inplace=True)
enjoy = self.ham(enjoy)
enjoy = self.ham_out(enjoy)
ham = F.relu(x + enjoy, inplace=True)
return ham
@MODELS.register_module()
class LightHamHead(BaseDecodeHead):
"""SegNeXt decode head.
This decode head is the implementation of `SegNeXt: Rethinking
Convolutional Attention Design for Semantic
Segmentation <https://arxiv.org/abs/2209.08575>`_.
Inspiration from https://github.com/visual-attention-network/segnext.
Specifically, LightHamHead is inspired by HamNet from
`Is Attention Better Than Matrix Decomposition?
<https://arxiv.org/abs/2109.04553>`.
Args:
ham_channels (int): input channels for Hamburger.
Defaults: 512.
ham_kwargs (int): kwagrs for Ham. Defaults: dict().
"""
def __init__(self, ham_channels=512, ham_kwargs=dict(), **kwargs):
super().__init__(input_transform='multiple_select', **kwargs)
self.ham_channels = ham_channels
self.squeeze = ConvModule(
sum(self.in_channels),
self.ham_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.hamburger = Hamburger(ham_channels, ham_kwargs, **kwargs)
self.align = ConvModule(
self.ham_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, inputs):
"""Forward function."""
inputs = self._transform_inputs(inputs)
inputs = [
resize(
level,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for level in inputs
]
inputs = torch.cat(inputs, dim=1)
# apply a conv block to squeeze feature map
x = self.squeeze(inputs)
# apply hamburger module
x = self.hamburger(x)
# apply a conv block to align feature map
output = self.align(x)
output = self.cls_seg(output)
return output